## Quiz 2

MATH 2184-10 - Linear Algebra
Summer 2017
Total Points: 30
Total Time: 20 minutes

Name: $\qquad$ Date: 2017-06-05

## Read all of the following information before starting the quiz:

- Show all work, clearly and in order, to get full credit.
- Do not use calculators.
- Circle or otherwise indicate your final answers.

1. Let M be the standard matrix for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes the vector $e_{2}$ to $e_{1}+2 e_{2}$ and keeps $e_{1}$ unchanged. Then,

$$
\mathrm{M}=[\mathrm{l}
$$

2. Find $(A B)^{-1}$ (if exists) where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 2 & -3
\end{array}\right], B=\left[\begin{array}{cc}
1 & -1 \\
0 & 2 \\
1 & 1
\end{array}\right]
$$

3. For what value(s) of $a$ is $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$ where

$$
A=\left[\begin{array}{ll}
1 & 0  \tag{10}\\
0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
a & b \\
c & -a^{2}
\end{array}\right] ?
$$

4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{n}$. Show that the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent if $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is linearly independent.
