Solution to Quiz 1
 MATH 1231 - Single-variable Calculus I
 Summer 2016

1. Determine whether the following function is odd, even or neither
(4 points)

$$
f(x)=x^{2}\left|x^{3}\right|
$$

Solution: A function f is odd if $f(-x)=-f(x)$ and even if $f(-x)=f(x)$ for all x. So we calculate $f(-x)$.

$$
\begin{aligned}
f(-x)= & (-x)^{2}\left|(-x)^{3}\right| \\
& =x^{2}\left|-x^{3}\right| \\
& =x^{2}\left|x^{3}\right| \\
& =f(x)
\end{aligned}
$$

Hence, the given function is even.
2. Let a function be given by

$$
f(t)=\frac{t^{2}-9}{t^{2}+2 t-15}
$$

(a) Find the domain of f.

Solution: The domain is the set on which the function is defined. The function is not defined for those t for which the denominator is zero, that is,

$$
\begin{aligned}
t^{2}+2 t-15 & =0 \\
\Longrightarrow t^{2}+5 t-3 t-15 & =0 \\
\Longrightarrow(t+5)(t-3) & =0 \\
\Longrightarrow t & =(-5), 3
\end{aligned}
$$

So, the domain of the function f is $\mathbb{R} \backslash\{-5,3\}$.
Or, in the interval notation, the domain is $(-\infty,-5) \cup(-5,3) \cup(3, \infty)$.
(b) Find the following limit

$$
\lim _{t \rightarrow 3} f(t)
$$

Solution:

$$
\begin{aligned}
\lim _{t \rightarrow 3} f(t) & =\lim _{t \rightarrow 3} \frac{t^{2}-9}{t^{2}+2 t-15} \\
& =\lim _{t \rightarrow 3} \frac{(t+3)(t-3)}{(t+5)(t-3)} \\
& =\lim _{t \rightarrow 3} \frac{(t+3)}{(t+5)} \\
& =\frac{3+3}{3+5} \\
& =\frac{6}{8} \\
& =\frac{3}{4}
\end{aligned}
$$

(c) Let a function g be defined by

$$
g(t)= \begin{cases}\frac{t^{2}-9}{t^{2}+2 t-15} & \text { if } t \in[0,3) \cup(3, \infty) \\ \frac{3}{4} & \text { if } t=3\end{cases}
$$

Is g continuous at $t=3$? Justify your answer.

Solution:

$$
\begin{array}{rlrl}
\lim _{t \rightarrow 3} g(t) & =\lim _{t \rightarrow 3} \frac{t^{2}-9}{t^{2}+2 t-15} \quad \text { (since } t \rightarrow 3 \text { i.e. } t \neq 3, \text { we choose the first definition in } g \text {) } \\
& =\frac{3}{4} & \quad \text { (calculated in part (b)) }
\end{array}
$$

By the definition of g,

$$
g(3)=\frac{3}{4}
$$

Hence, we have,
i. $\lim _{t \rightarrow 3} g(t)$ exists.
ii. $\lim _{t \rightarrow 3} g(t)=g(3)$.

So, g is continuous at $t=3$.

