Midterm
 MATH 1231 - Single-variable Calculus I
 Summer 2016

Total Points: 110
Total Time: 90 minutes
Max Points: 100

Name: \qquad Date: \qquad

Read all of the following information before starting the exam:

- There are 11 questions and each question carries 10 points. The maximum points that you can get is $\mathbf{1 0 0}$.
- Show all work, clearly and in order, to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Do not use a calculator.
- Books, notes or any other help are not allowed.
- Do all your scratch work on the last sheet of this booklet.
- Circle or otherwise indicate your final answers.

Signature: \qquad
(By signing above you agree to abide by the Code of Academic Integrity.)

1. Find the domain of the function

$$
f(x)=\frac{x}{\sqrt[3]{x^{2}+x-6}}
$$

2. Find the limit
$\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{x-x^{2}}$
3. (a) Let g be a differentiable function with $g^{\prime}(x) \geq 7$ for all x. If $g(3)=2$ how big can $g(1)$ be?
(Hint: Use the Mean Value Theorem)
(b) Determine whether the following function is odd, even, or neither.

$$
f(x)=\left(x^{2}+3\right)\left(x^{3}-5 x\right)
$$

4. Find the limit

$$
\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{\pi}{x^{3}}\right)
$$

(Hint: Use the Sandwich Theorem)
5. Differentiate the function

$$
f(x)=x \sin \left(\frac{3}{x}\right)
$$

6. Differentiate the function

$$
g(y)=\frac{y^{2}}{y+4}
$$

7. Find the equation of the tangent line through $(0,0)$ to the graph of the equation

$$
y=\sin (5 x)+\sin ^{2}(5 x)
$$

8. Find $\frac{d y}{d x}$ by implicit differentiation

$$
\cos (x y)=2 x y^{2}+\sin (y)
$$

9. Let f be a function given by

$$
f(x)=x^{3}+\frac{x^{2}}{2}+2 x+7
$$

(a) Show that f has a root in the interval $[-2,2]$.
(Hint: Use the Intermediate Value Theorem)
(b) Show that f does not have more than one root in the interval $[-2,2]$. (Hint: Use Rolle's Theorem)
10. Let f be a function given by

$$
f(x)=\frac{x^{3}}{3}-x+3
$$

(a) Find the critical points of f.
(b) Find the intervals where f is increasing and where f is decreasing. Determine whether the critical points are local max, local min or neither.
11. Find all values of c such that the function

$$
f(x)= \begin{cases}c^{2} x^{2}+2 x+1 & \text { if } x \leq 2 \\ 2 x c+11 & \text { if } x>2\end{cases}
$$

is continuous everywhere.

Scratch

Scratch

