
MAP 499 - Relationship between structural behavior and

component coordination in bistable lattices

Hung Chu, Regan Stambaugh, Debdeep Bhattacharya

September 27, 2025

Abstract

Bistable lattices are topological models used to demonstrate the behavior of various materi-
als. Our work uses combinatorial and variational approaches to assess the relationship between
geometrical constraints and minimal-energy states of various bistable lattices including, but not
limited to, triangular and Penrose lattices. This is useful in predicting the asymptotic response of
an external energy source on a lattice structure given certain boundary conditions, rendering our
results applicable to metamaterial design and understanding crystallization, among others.

1

Contents

1 Introduction 3

2 Bistability and Double-Well Potential 4
2.1 Energy and Force Functions . 4
2.2 Energy surface . 5

3 Minimization Schemes 6
3.1 Setting Up a Minimization Problem . 6

3.1.1 Computing the Gradient . 6
3.1.2 Computing the Hessian Matrix . 8
3.1.3 Summary . 12

3.2 Gradient Descent . 13
3.2.1 Overview . 13
3.2.2 Demonstration . 14

3.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) . 16
3.3.1 Overview . 16
3.3.2 Demonstration . 17

3.4 Sequential Least Squares Quadratic Programming (SLSQP) 20
3.4.1 Overview . 20

3.5 Angle constraint on lattice nodes . 20
3.5.1 Demonstration . 21

3.6 Dynamic Relaxation . 22
3.6.1 Overview . 22
3.6.2 Demonstration . 23

4 Quasistatic solution to boundary value problems 26

5 Conditions on Triangular Lattice Configurations 26

6 3D Printed Bistable Structure 33
6.1 Bistable Link . 33
6.2 Bistable Lattice . 35

7 Discussion 38
7.1 The Double-well Issue of a Bistable Edge . 38
7.2 The Restriction on Degrees of Freedom by Connectivity 39
7.3 The Effect of Organization . 39
7.4 Existence of Non-zero Minimal-energy States . 41

8 Conclusion 43

2

1 Introduction

Bistable lattices are mathematical models that are used to demonstrate the behavior of various ma-
terials and processes. Structurally, a lattice is a collection of nodes connected by links, often in a
uniform manner; common shapes are triangular, square, and hexagonal, as well as the penrose lattice.
A lattice becomes bistable when its links have two equilibria, meaning the link is stable in both its
short mode (when it has a displacement of 0) and its long mode (when it has a displacement of c).
Thus, the lattice itself gains a certain flexibility and has more than one form for which it is stable.

Figure 1: Example energy model of a bistable link.

(a) Square Lattice (b) Triangular lattice (c) Penrose Lattice

Figure 2: Example lattices

Bistable structures such as these are notable for their ability to withstand deformations, which
makes bistable lattices excellent models for materials on a molecular level. For example, if we let
each node of the lattice be a molecule, we can say that the material’s solid state is represented when
every link is in short mode, and its liquid state is represented when every link is long. Deformations
of either of these states model phases of the transition from one state to the other. A similar but
more interesting process that can be modeled by a bistable lattice is crystallization, the process by
which solids with highly organized atoms form. When matter crystallizes, its atoms first deform and
then settle into a stable state and form a crystalline structure. A bistable lattice model mimics this
atomic behavior, first deforming and then approaching its closest configuration where all links are at
one of their two equilibria. Studying and running simulations of this model can generate possible
configurations, as well as exclude impossible ones.

3

Because of their bistable nature, deformations of a bistable lattice are also reversible, and a structure
can return to its original form after a deformation without permanent damage [7]. This makes bistable
lattices applicable when thinking of resilient structures, or structures well suited to withstand impact,
as the lattice’s bistable properties create stronger structures that are more likely to withstand an
applied force. Metamaterials, materials manufactured to have properties that do not naturally occur,
can be manufactured to behave like a bistable lattice on the molecular level. As a result, metamaterials
are less likely to break under force. Studying bistable lattices as models for metamaterials predicts how
such materials react to impact, insight useful for those seeking to maximize resiliency when creating
and working with metamaterials. More applications of bistable lattices span industries, modeling
electric, magnetic, and thermal fields, as well as the impact of mechanical force on the molecular level
[7, 3].

It is also important to note that not all applications can be perfectly modeled by one lattice form;
for example, in some applications, a bistable Penrose lattice such as that in Figure 2(c) may more
accurately model the process being studied than the bistable triangular lattice (Figure 2(b)). It is
valuable, too, to consider different lattice forms when examining resilient metamaterials. Not only is it
worth examining which lattice form, if any, is the most resistant to force, but one can also investigate
whether stronger structures can be created by splicing together triangular, square, and Penrose lattices.
Thus, it is critical to develop an understanding of how multiple types of bistable structures work for
those who seek to employ these models in their field.

Our study seeks to grow our understanding of these models by finding new ways to evaluate and
assess bistable structures. Hooke’s law tells us that force is the derivative of energy with respect to
time; thus, any constant force added to a lattice increases the total energy of a lattice, which is equal to
the sum of the energy stored in each link. In this paper, we first walk through the mathematics required
to set up an energy minimization problem and discuss various numerical minimization schemes that
allow us to identify a lattice’s minimal energy state. We then focus on the geometry of a triangular
bistable lattice and the consequences of geometrical constraints on certain minimal energy states (still
states), and finally we present 3-dimensional models of a bistable lattice that tangibly visualize our
work.

2 Bistability and Double-Well Potential

Because the total energy of a bistable lattice is the sum of the energy of its links, it is important to
define the energy of each link. Due to its bistable nature, we say that each link has 0 energy in both
its short and long mode. These characteristics can be modeled by a quartic equation [2] and create
double-well potential for each link. We assume that each link has identical properties, and thus the
sum of these expressions for each link is equal to the lattice’s total energy.

Our model is adapted from the quartic presented in Cherkaev’s paper [2], with a few notable
differences. Our expression takes relative strain on the link as its input rather than length, which not
only shifts the graph so that the first minimum is at zero, but neutralizes the difference in impact that
a deformation has on a larger lattice versus a smaller one. This allows us to generalize the model to
lattices of all sizes. In addition, we define our strain by the displacement of the nodes instead of the
length of the link, which is a simpler change to quantify.

2.1 Energy and Force Functions

Define a function,

hc(r) = r2(r − c)2,

to give the energy of a bistable link at a given strain r such that the link’s equilibria occur at r = 0
and r = c. Then the force on the link is given by

h′
c(r) = 2r(r − c)2 + 2r2(r − c).

For a link between nodes i and j, define the two-point strain as

sij =
|(xi + ui)− (xj + uj)| − |xi − xj |

|xi − xj |
.

4

Notice that |(xi + ui) − (xj + uj)| represents the length of the link after the ith and jth nodes are
displaced by ui and uj respectively, and |xi − xj | represents the link’s original length at its short
equilibrium.

Figure 3: Example of a lattice. Note that xi is the vector originating at the origin and ending at the
initial position of node i, and the vector ui is the vector originating at the initial position of node i
and ending at its displaced position.

Now define ui as the displacement of the ith node,

ui =

[
ui1

ui2

]
.

If there are n nodes in the lattice, define U to be the vector

U =


u11

u12

...
un1

un2


which represents the displacement of every node in the lattice. With this vector, we can construct
a function E(U) that takes as an input the displacement of every node and yields the energy of the
lattice resulting from the strain on each link. If L is the set of all links, then we have

E(U) =
∑

(i,j)∈L

h(sij)

as the total energy in the lattice.
In order to understand and analyze this model, it is important to have a solid comprehension of how

lattices work. It is established that the total energy of a lattice is dependent on the displacement of
each node, or the elongation of each link. Over time, a deformed lattice will approach a configuration
where its total energy is minimized. These are called minimal energy states or minimal energy
configurations, and we would expect the lattice’s total energy to be equal to zero. In this case -
when a lattice is in a minimal energy state and its total energy is 0 - the configuration is called a still
state or a still configuration. Since a lattice in a still state has 0 energy, all of its links are either
in short mode or long mode by necessity. Based on the theoretical overview, we attempt to visualize
and assess all possible minimal energy states of a given lattice with the help of computer simulation.
In order to do so, we turn this research question into an optimization problem, minimizing the total
energy of the lattice with respect to displacement.

2.2 Energy surface

We consider a triangle consisting of 3 bistable links. Assume that two of the three nodes are clamped
at its reference position, i.e. one link is fixed at its short mode. The third node is free. Fig. 4 shows

5

Figure 4: Energy surface as a function of the x and y displacement of the free vertex of a triangle.

Figure 5: Possible zero-energy configurations of a triangle with three bistable links.

the energy surface as a function of the x and y displacement of the third node, while Figure 5 shows
possible zero-energy configurations of this lattice. Notice that Figure 4 has only two visible zero-
energy points visualized, but there are two others located outside the range of this plot, representing
the middle configuration of 5 and its mirror image.

3 Minimization Schemes

3.1 Setting Up a Minimization Problem

Numerical minimization schemes demand either the energy gradient, the Hessian matrix, or both.
Below are detailed computations of each of these.

The minimization problem can be described as

min
U∈R2×n

E(U) (1)

subject to constraints that are described in Section 3.5.
First, we consider the unconstrained problem.

3.1.1 Computing the Gradient

To solve the minimization problem, we first compute ∂
∂ui,1

E(U) and ∂
∂ui,2

E(U). Fix i, and consider

first ∂
∂ui,1

E(U). The term ui,1 does not appear in some term in the above summation, and thus the

derivative of these term with respect to ui,1 will be 0. To denote the terms with ui,1 (where the
derivative is not 0), let Ωi be the set of nodes that are neighbors of i such that the energy in the lattice

6

dependent on node i is

Ei(U) =
∑
j∈Ωi

h(sij).

The derivative with respect to ui,1, given by the chain rule, is

∂

∂ui,1
Ei(U) =

∑
j∈Ωi

∂

∂ui,1
h(sij)

=
∑
j∈Ωi

h′(sij) ·
∂

∂ui,1
sij

=
∑
j∈Ωi

h′(sij) ·
∂

∂ui,1

(
|(xi + ui)− (xj + uj)| − |xi − xj |

|xi − xj |

)
.

To derive the vectorized term with respect to a component of one of the vectors, it is necessary to
break the vector into its components. Since |xi − xj | is constant with respect to ui,1, the derivation1

comes to

∂

∂ui,1

(
|(xi + ui)− (xj + uj)| − |xi − xj |

|xi − xj |

)

=
∂

∂ui,1

(
|(xi + ui)− (xj + uj)|

|xi − xj |

)
+ 0

=
1

|xi − xj |
· ∂

∂ui,1

(√
((xi,1 + ui,1)− (xj,1 + uj,1))2 + ((xi,2 + ui,2)− (xj,2 + uj,2))2

)

=
1

|xi − xj |
· 2((xi,1 + ui,1)− (xj,1 + uj,1)) · 1
2
√
((xi,1 + ui,1)− (xj,1 + uj,1))2 + ((xi,2 + ui,2)− (xj,2 + uj,2))2

=
1

|xi − xj |
·

(
(xi,1 + ui,1)− (xj,1 + uj,1)

|(xi + ui)− (xj + uj)|

)
,

and thus
∂

∂ui,1
Ei(U) =

∑
j∈Ωi

h′(sij) ·
(xi,1 + ui,1)− (xj,1 + uj,1)

|(xi + ui)− (xj + uj)| · |xi − xj |
.

Similarly, the derivative with respect to ui,2 comes to

∂

∂ui,2
Ei(U) =

∑
j∈Ωi

h′(sij) ·
(xi,2 + ui,2)− (xj,2 + uj,2)

|(xi + ui)− (xj + uj)| · |xi − xj |
.

These quantities are used to define the gradient of our energy function:

∇E(U) =



∂
∂u1,1

E(U)
∂

∂u1,2
E(U)

∂
∂u2,1

E(U)
∂

∂u2,2
E(U)
...

∂
∂un,1

E(U)
∂

∂un,2
E(U)


(4).

1It is important to understand the mathematics of this, as the simplified version of ∂/∂ui,1h
(
sij) is taken for granted

when computing the second derivatives.

7

3.1.2 Computing the Hessian Matrix

To be able to use further numerical minimization techniques, we need to next find the matrix of second
derivatives, or the Hessian matrix. If there are n nodes in the matrix, then the matrix will look like

∇2E(U) =



∂2E
∂u1,1∂u1,1

∂2E
∂u1,1∂u2,1

. . . ∂2E
∂u1,1∂un,1

∂2E
∂u1,1∂u1,2

. . . ∂2E
∂u1,1∂un,2

∂2E
∂u2,1∂u1,1

∂2E
∂u2,1∂u2,1

. . . ∂2E
∂u2,1∂un,1

∂2E
∂u2,1∂u1,2

. . . ∂2E
∂u2,1∂un,2

...
...

...
...

...
...

...
∂2E

∂un,1∂u1,1

∂2E
∂un,1∂u2,1

. . . ∂2E
∂un,1∂un,1

∂2E
∂un,1∂u1,2

. . . ∂2E
∂un,1∂un,2

∂2E
∂u1,2∂u1,1

∂2E
∂u1,2∂u2,1

. . . ∂2E
∂u1,2∂un,1

∂2E
∂u1,2∂u1,2

. . . ∂2E
∂u1,2∂un,2

...
...

...
...

...
...

...
∂2E

∂un,2∂u1,1

∂2E
∂un,2∂u2,1

. . . ∂2E
∂un,2∂un,1

∂2E
∂un,2∂u1,2

. . . ∂2E
∂un,2∂un,2


(5).

Ultimately, this means we need to find four different families of second derivatives:

∂2E

∂ui,1∂uj,1

∂2E

∂ui,2∂uj,1

∂2E

∂ui,1∂uj,2

∂2E

∂ui,2∂uj,2

For any given pair of nodes i and j, it is necessary to know whether i and j are neighbors or not
to find these second derivatives. First, suppose i and j are not neighbors. Then,

∂2E

∂ui,1∂uj,1
=

∂

∂ui,1

(
∂E

∂uj,1

)

=
∂

∂ui,1

(∑
p∈Ωj

h′(sjp) ·
(xj,1 + uj,1)− (xp,1 − up,1)

|(xj + uj)− (xp − up)| · |xj − xp|

)
.

Because i /∈ Ωj , there are no terms in the above sum that contain ui,1, and the entire expression is
constant with respect to ui,1. Thus, if i and j are not neighbors, we have that

∂2E

∂ui,1∂uj,1
= 0

∂2E

∂ui,2∂uj,1
= 0

∂2E

∂ui,1∂uj,2
= 0

∂2E

∂ui,2∂uj,2
= 0.

Now suppose that i and j are neighbors, and consider ∂2E
∂ui,1∂uj,1

. In the expression

∂

∂ui,1

(∑
p∈Ωj

h′(sjp) ·
(xj,1 + uj,1)− (xp,1 + up,1)

|(xj + uj)− (xp + up)| · |xj − xp|

)
,

the variable ui,1 appears in only one term of the summation. Every other term in the summation is
constant with respect to ui,1, so we can focus on the following derivation,

∂

∂ui,1

(
h′(sji) ·

(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

)
.

8

The derivative can be written generally using the product rule2:

∂

∂ui,1

(
h′(sji) ·

(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

)

= h′(sji) ·
∂

∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

)
+

∂

∂ui,1

(
h′(sji)

)
· (xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

=
h′(sji)

|xj − xi|
· ∂

∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)|

)
+

∂

∂ui,1

(
h′(sji)

)
· (xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

Computing the unknown derivatives within the above expression first requires the chain rule3 to get

∂

∂ui,1

(
h′(sji)

)
= h′′(sji) ·

∂

∂ui,1

(
sji
)

=

(
|(xj + uj)− (xi + ui)| − |xj − xi|

|xj − xi|

)

= h′′(sji)

(
− (xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

)
.

Next, let a = (xj,1 + uj,1)− (xi,1 + ui,1) and b = |(xj + uj)− (xi + ui)|), and use the quotient rule:

∂

∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)|

)
=

∂

∂ui,1

(
a

b

)

=
b · ∂

∂ui,1
(a)− a · ∂

∂ui,1
(b)

b2
.

Note that4

∂

∂ui,1
(a) =

∂

∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)
= −1 and

∂

∂ui,1
(b) =

∂

∂ui,1
|(xj + uj)− (xi + ui)| = − (xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)|
.

So,

b · ∂
∂ui,1

(a)− a · ∂
∂ui,1

(b)

b2
=

−|(xi + ui)− (xj + uj)|+
(
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
/|(xi + ui)− (xj + uj)|

|(xi + ui)− (xj + uj)|2

=

(
−1

|(xi + ui)− (xj + uj)|
+

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
|(xi + ui)− (xj + uj)|3

)
.

Finally, we can substitute to find ∂2E/∂ui,1∂uj,1:

h′(sji)

|xj − xi|
· ∂

∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)|

)
+

∂

∂ui,1

(
h′(sji)

)
· (xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

=
h′(sji)

|xj − xi|

(
−1

|(xi + ui)− (xj + uj)|
+

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
|(xi + ui)− (xj + uj)|3

)

+

(
− h′′(sji) ·

(xj,1 + uj,1)− (xi,1 + ui,1)

|(xi + ui)− (xj + uj)| · |xi − xj |

)(
(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

)
.

2Factoring out 1/|xj − xi| from the derivative in the first term makes the derivation simpler in later steps
3Notice that the derivative of sji with respect to ui,1 is identical to ∂/∂ui,1

(
sij) except for its sign, since

∂/∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)
= −1.

4The derivation of ∂/∂ui,1

(
b
)
is the same as ∂/∂uj,1

(
sji), without constants and coefficients, but negative, since

∂/∂ui,1

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)
= −1.

9

Simplification allows us to conclude that, if nodes i and j are neighbors,

∂2E

∂ui,1∂uj,1
=

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)
− h′(sji)

|(xj + uj)− (xi + ui)||xj − xi|
.

Similarly,

∂2E

∂ui,2∂uj,2
=

(
(xj,2 + uj,2)− (xi,2 + ui,2)

)2
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)
− h′(sji)

|(xj + uj)− (xi + ui)||xj − xi|

given the same conditions. A similar process can be followed to find ∂2E
∂ui,1∂uj,2

, since

∂2E

∂ui,1∂uj,2
=

∂

∂ui,1

(∑
p∈Ωj

h′(sjp) ·
(xj,2 + uj,2)− (xp,2 + up,2)

|(xj + uj)− (xp + up)| · |xj − xp|

)
.

For the same reasons as above, we only need to derive one term within the summation, so once again
the product rule gives us

∂

∂ui,1

(
h′(sjp) ·

(xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)| · |xj − xi|

)

=
h′(sji)

|xj − xi|
· ∂

∂ui,1

(
(xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)|

)
+

∂

∂ui,1

(
h′(sji)

)
· (xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)| · |xj − xi|

Again, we want to compute the two unknown derivatives in the expression above. We know from
earlier that

∂

∂ui,1

(
h′(sji)

)
= h′′(sji)

(
− (xj,1 + uj,1)− (xi,1 + ui,1)

|(xi + ui)− (xj + uj)| · |xi − xj |

)
,

so we just need to solve for ∂
∂ui,1

(
(xj,1+uj,1)−(xi,1+ui,1)

|(xj+uj)−(xi+ui)|

)
. Since the numerator is a constant coefficient,

we can rewrite this as

∂

∂ui,1

(
(xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)|

)
=
(
(xj,2 + uj,2)− (xi,2 + ui,2)

)
· ∂

∂ui,1

(
|(xj + uj)− (xi + ui)|

)−1

and focus on differentiating the vectorized term:

∂

∂ui,1

(
|(xj + uj)− (xi + ui)|

)−1

=
∂

∂ui,1

((
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
+
(
(xj,2 + uj,2)− (xi,2 + ui,2)

)2)−1/2

= −1

2

((
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
+
(
(xj,2 + uj,2)− (xi,2 + ui,2)

)2)−3/2

(2)
(
(xj,1 + uj,1)− (xi,1 + ui,1)

)
(−1)

= −1

2

(
|(xj + uj)− (xi + ui)|2

)−3/2

(−2)
(
(xj,1 + uj,1)− (xi,1 + ui,1)

)
=

(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)|3
.

Now we can make the substitutions necessary to find ∂2E
∂ui,1∂uj,2

:

h′(sji)

|xj − xi|
· ∂

∂ui,1

(
(xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)|

)
+

∂

∂ui,1

(
h′(sji)

)
· (xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)| · |xj − xi|

=
h′(sji)

|xj − xi|

((
(xj,2 + uj,2)− (xi,2 − ui,2)

)(
(xj,1 + uj,1)− (xi,1 + ui,1)

)
|(xj + uj)− (xi + ui)|3

)

+

(
− h′′(sji)

(xj,1 + uj,1)− (xi,1 + ui,1)

|(xj + uj)− (xi + ui)| · |xj − xi|

)(
(xj,2 + uj,2)− (xi,2 + ui,2)

|(xj + uj)− (xi + ui)| · |xj − xi|

)
.

10

Simplifying allows us to conclude that

∂2E

∂ui,1∂uj,2
=

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)(
(xj,2 + uj,2)− (xi,2 + ui,2)

)
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)
,

and similarly,

∂2E

∂ui,2∂uj,1
=

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)(
(xj,2 + uj,2)− (xi,2 + ui,2)

)
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)
.

Finally, suppose i = j, and our second derivatives are

∂2E

∂u2
i,1

,
∂2E

∂ui,2∂ui,1
,

∂2E

∂ui,1∂ui,2
, and

∂2E

∂u2
i,2

.

Like before, we’ll focus first on ∂2E/∂u2
i,1,

∂2E

∂u2
i,1

=
∂

∂ui,1

(
∂E

∂ui,1

)

=
∂

∂ui,1

(∑
p∈Ωi

h′(sip)
(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)| · |xi − xp|

)

A crucial difference here from before is that ui,1 is contained in every term of the summation. Thus,
the second derivative will be a sum itself. So, for every p ∈ Ωi, the product rule provides

∂

∂ui,1

(
h′(sip)

(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)| · |xi − xp|

)

= h′(sip) ·
∂

∂ui,1

(
(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)| · |xi − xp|

)
+

∂

∂ui,1
h′(sip) ·

(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)| · |xi − xp|

To find the two unknowns in the expression above, we follow similar processes as before. We can find
∂/∂ui,1

(
h′(sip)

)
using the chain rule -

∂

∂ui,1
h′(sip) = h′′(sip) ·

∂

∂ui,1
(sip)

= h′′(sip)

(
(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)||xi − xp|

)

- and we can find the other using the quotient rule. As we did before, let a = (xi,1+ui,1)− (xp1+up1)
and b = |(xi + ui)− (xp + up)| such that

∂

∂ui,1
a = 1

∂

∂ui,1
b =

(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)|
.

By the quotient rule,

∂

∂ui,1

(
(xi,1 + ui,1)− (xp,1 + up,1)

|(xi + ui)− (xp + up)|

)

=
1|(xi + ui)− (xp + up)| −

(
(xi,1 + ui,1)− (xp,1 + up,1)

)2
/|(xi + ui)− (xp + up)|

|(xi + ui)− (xp + up)|2
.

11

Simplifying this term yields the following result:

∂2E

∂u2
i,1

=

(
(xi,1 + ui,1)− (xp,1 + up,1)

)2
|(xi + ui)− (xp + up)|2|xi − xp|

(
h′′(sip)

|xi − xp|
− h′(sip)

|(xi + ui)− (xp + up)|

)
+

h′(sip)

|(xi + ui)− (xp + up)|

Similarly,

∂2E

∂u2
i,2

=

(
(xi,2 + ui,2)− (xp,2 + up,2)

)2
|(xi + ui)− (xp + up)|2|xi − xp|

(
h′′(sip)

|xi − xp|
− h′(sip)

|(xi + ui)− (xp + up)|

)
+

h′(sip)

|(xi + ui)− (xp + up)|
.

Following a very similar process, we can find ∂/∂ui,1ui,2 and ∂/∂ui,2ui,1, which end up being equivalent:

∂

∂ui,1∂ui,2
=

∂

∂ui,2∂ui,1

=

(
(xi,1 + ui,1)− (xp,1 + up,1)

)(
(xi,2 + ui,2)− (xp,2 + up,2)

)
|(xi + ui)− (xp + up)|2|xi − xp|

(
h′(sip)

|(xi + ui)− (xp + up)|
+

h′′(sip)

|xi − xp|

)

3.1.3 Summary

When nodes i and j are not neighbors,

∂2E

∂ui,1∂uj,1
=

∂2E

∂ui,2∂uj,1
=

∂2E

∂ui,1∂uj,2
=

∂2E

∂ui,2∂uj,2
= 0.

When nodes i and j are neighbors,

∂2E

∂ui,1∂uj,1
=

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)2
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)
− h′(sji)

|(xj + uj)− (xi + ui)||xj − xi|

∂2E

∂ui,2∂uj,2
=

(
(xj,2 + uj,2)− (xi,2 + ui,2)

)2
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)
− h′(sji)

|(xj + uj)− (xi + ui)||xj − xi|

∂2E

∂ui,1∂uj,2
=

(
(xj,1 + uj,1)− (xi,1 + ui,1)

)(
(xj,2 + uj,2)− (xi,2 + ui,2)

)
|(xj + uj)− (xi + ui)|2|xj − xi|

(
h′(sji)

|(xj + uj)− (xi + ui)|
− h′′(sji)

|xj − xi|

)

=
∂2E

∂ui,2∂uj,1

Finally, when i = j, we have:

∂2E

∂u2
i,1

=
∑
p∈Ωi

((
(xi,1 + ui,1)− (xp,1 + up,1)

)2
|(xi + ui)− (xp + up)|2|xi − xp|

(
h′′(sip)

|xi − xp|
− h′(sip)

|(xi + ui)− (xp + up)|

)
+

h′(sip)

|(xi + ui)− (xp + up)|

)
∂2E

∂u2
i,2

=
∑
p∈Ωi

((
(xi,2 + ui,2)− (xp,2 + up,2)

)2
|(xi + ui)− (xp + up)|2|xi − xp|

(
h′′(sip)

|xi − xp|
− h′(sip)

|(xi + ui)− (xp + up)|

)
+

h′(sip)

|(xi + ui)− (xp + up)|

)
∂2E

∂ui,1∂ui,2
=
∑
p∈Ωi

((
(xi,1 + ui,1)− (xp,1 + up,1)

)(
(xi,2 + ui,2)− (xp,2 + up,2)

)
|(xi + ui)− (xp + up)|2|xi − xp|

(
h′(sip)

|(xi + ui)− (xp + up)|
+

h′′(sip)

|xi − xp|

))

=
∂2E

∂ui,2∂ui,1

This can be visualized in a color-coded Hessian.
Assuming i and j are neighbors, any second derivative colored light green is equivalent to ∂2E/∂ui,1∂uj,1.

Light pink indicates the second derivative of neighbors can be found with the formula for ∂2E/∂ui,1∂uj,2,
and light blue indicates the formula for ∂2E/∂ui,2∂uj,2 should be used. Note that it is impossible to
generalize which nodes are neighbors and which are not as it varies from lattice to lattice, so it is
important to remember that the matrix could be dense or sparse depending on the lattice’s initial

12

configuration. However, it will always be the case that i = j along the diagonals of each quadrant of
the matrix - this is denoted by the darker colors. Dark green corresponds to the formula for ∂2E/∂u2

i,1,

hot pink corresponds to ∂2E/∂ui,1∂ui,2, and dark blue corresponds to ∂2E/∂u2
i,2. A more complete

matrix, without dots, would demonstrate the diagonals more clearly.
With the preliminary computations set up, it is now possible to implement minimization schemes to

investigate minimal energy configurations. With the help of the SciPy library in the Python program-
ming language [6], we are able to perform the gradient descent, Broyden-Fletcher-Goldfarb-Shanno
(BFGS), and Sequential Least Squares Quadratic Programming (SLSQP) minimization methods, as
well as visualize the corresponding results. All schemes take the initial displacements of the nodes in
the lattice as input, and allow us to observe the condition where the total energy of the entire struc-
ture is either minimized or at approximately 0. However, the outputs of the methods are different.
The underlying expectation for the minimization schemes is that we will be able to locate the nearest
minima for total energy and determine whether or not that point corresponds to a zero-energy state.
For these simulations, we fix the critical value c of the energy and force model to be 0.9.

3.2 Gradient Descent

3.2.1 Overview

We implement a first-order iterative minimization algorithm following the idea of gradient descent.
In this case, the algorithm is programmed to run for a specified amount of iterations, returning the
energy scalar each execution for manual analysis. To begin, a list of all displacement vectors of the
nodes in n2 dimension is obtained:

U = [u1,u2, ...,un] = [[u1,1, u1,2], [u2,1, u2,2], ..., [un,1, un,2]]

To calculate the total energy of the lattice configuration defined with the current U , we pass the
displacement vectors into a series of helper functions which return the total energy (scalar) with respect
to the strain (scalar) on each link as the starting iteration. We arrive at the strain values based on
Equation (3):

S = { |(xi + ui)− (xj + uj)| − |xi − xj |
|xi − xj |

: i < j and j ∈ Ωi}

By passing each element in S into Equation (1), we obtain the energy on each link and subsequently
the total energy on the lattice:

TotalEnergy =
∑
s∈S

s2(s− c)2

13

Following the initial iteration, we define the step size h as a modifiable number (1e− 5 by default),
the direction as ∇E(U), and N as the number of iterations. We then compute the displacement as a
new input for total energy calculation:

U1 = U − h×∇E(U)

More specifically:

(u1,1)1 = h× ∂

∂u1,1
E(U)

(u1,2)1 = h× ∂

∂u1,2
E(U)

(u2,1)1 = h× ∂

∂u2,1
E(U)

(u2,2)1 = h× ∂

∂u2,2
E(U)

...

(un,1)1 = h× ∂

∂un,1
E(U)

(un,2)1 = h× ∂

∂un,2
E(U)

(n being the number of nodes)

The result obtained is routed back to the functions that total the energy in the lattice with the new
displacements. The process will be repeated N times, with the input for the mth iteration (m ∈ N)
defined as:

Um = Um−1 − h×∇E(Um−1)

Ultimately, we are able to observe the different energy values returned from each run of the algo-
rithm, allowing for the investigation of zero-energy conditions:

Sm = { |(xi + ui)− (xj + uj)| − |xi − xj |
|xi − xj |

: i < j and j ∈ Ωi and ui, uj ∈ Um}

TotalEnergym =
∑
s∈Sm

s2(s− c)2

As an additional note, our team finds that the results are more optimal as the step size h decreases
and the number of iterations N increases.

3.2.2 Demonstration

The research group performs a gradient descent minimization scheme on a 5× 5 lattice.

14

Figure 6: 5×5 lattice set-up.

We define U as a displacement field of a strain magnitude 0.7 on every link.

Figure 7: Scaling by 0.7 displacement on lattice.

We begin gradient descent with a stepping size h = 1e − 8. The scheme is run for 400 iterations.
Results show that the lattice reaches a zero-energy state where all links expand into their long mode
(notice that the lengths of the links are now 0.002, in contrast to 0.001 at the start).

15

Figure 8: Result of running gradient descent on 0.7-scaling displacement.

We plot the total energy of the intermediate lattices with time (iterations). The model appears to
be an exponential decay function. This confirms that the scheme is causing the lattice to converge to
a state where energy is minimized.

Figure 9: Total energy in time during gradient descent.

However, this minimization method is inaccurate at smaller precision degrees and concludes at the
last specified iteration rather than the minimal energy state. Hence, it becomes difficult to pinpoint
the exact minimal state in which we are interested.

3.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS)

3.3.1 Overview

To accommodate for the shortcoming from the gradient descent method, the research group utilizes the
’minimize’ function from Scipy’s ’optimize’ library, which by default is the Broyden-Fletcher-Goldfarb-

16

Shanno (BFGS) algorithm. The BFGS method automatically determines its stepping direction and
size by approximating the second order derivative of the objective function gradually, allowing it to find
the local minimum more accurately and fast. The following parameters are passed into the function
for the most desirable outcome:

• Initial guess U

• Objective function E(U)

• Jacobian matrix Matrix (4)

• Hessian matrix Matrix (5)

We begin by taking the inverse of the Hessian matrix at U (H(U)). This process is done automat-
ically by the algorithm. It is worth noting that the BFGS function is capable of approximating an
inverse Hessian matrix from the objective function, meaning that it is not required that a Hessian ma-
trix be calculated manually. However, this also means that the scheme will be approximating a second
derivative matrix at every iteration, which is computationally expensive. Therefore, by constructing
the Hessian prior to initiating the algorithm, we can save significant runtime and yield more accurate
results. The inverse matrix H−1(U) is then used to define a step direction of:

H−1(U)×∇E(U)

This gives us a new value for U :

U1 = U −H−1(U)×∇E(U)

At the new value U1, we then calculate the total energy of the current configuration to assess the
algorithm:

S = { |(xi + ui)− (xj + uj)| − |xi − xj |
|xi − xj |

: i < j and j ∈ Ωi and ui, uj ∈ U}

TotalEnergy =
∑
s∈S

s2(s− c)2

In contrast to gradient descent, BFGS does not require a defined number of iterations, but rather
automatically stops at an approximation of the nearest minima. The function will continue to run by
updating U at every iteration k:

Uk = Uk−1 −H−1(Uk−1)×∇E(Uk−1)

3.3.2 Demonstration

We first define our lattice to be a 5x5 structure visualized in Figure 6. We then define the displacement
U to be a Gaussian displacement field with the mean being the midpoint of the lattice, stretching the
relative middle link by some variable magnitude, while simultaneously clamping the bottom left most
node.

17

Figure 10: Gaussian displacement on lattice.

We begin running the BFGS optimization with a displacement magnitude of 0.3. This value is
chosen to examine the hypothesis that if the strain value is less than 0.5, the lattice will snap back to
its original configuration. At 0.3 magnitude, BFGS returns the nearest lattice topology with minimum
energy:

Figure 11: Lattice after BFGS minimization at 0.3 displacement magnitude.

This confirms our prediction of how the lattice would behave. This current configuration is in a
zero-energy state. We continue by running the optimization algorithm at 0.5 magnitude:

18

Figure 12: Lattice after BFGS minimization at 0.5 displacement magnitude.

Although this is not a zero-energy configuration, this lattice structure is in a minimal-energy state.
We can verify this by setting up a test which perturbs each node by a random and small amount
of displacement for a set number of times. As the current lattice is changing, we can observe the
correlating changes in the total energy produced. A minimal-energy state implies that any minor
perturbation will cause the lattice to produce a higher total energy value. We run the test on the
result of the BFGS minimization for 100 iterations and are able to confirm that the resulting lattice is
at a minimal-energy state.

Figure 13: BFGS’ product perturbing test result.

However, as we run the minimization scheme again with the displacement magnitude at 0.7, we
observe that overlaps occur.

19

Figure 14: Lattice after BFGS minimization at 0.7 displacement magnitude..

From Figure 14, we can see that the link between node 22 and 23 overlaps with that between node
17 and 18. While this, in essence, is not an impossible configuration, this lattice layout is invalid as
the research objectives lie within a 2 dimensional space. Therefore, overlap cannot be allowed. One
solution will be to implement a constraint on the optimization scheme. Since the BFGS method is
designed to solve unconstrained nonlinear optimization problems, the research team looks at a different
scheme.

3.4 Sequential Least Squares Quadratic Programming (SLSQP)

3.4.1 Overview

In order to prevent the overlapping of lattice links, we implemented a Lagrange-Newton optimization
method built in the ’minimize’ function known as Sequential Least Squares Quadratic Programming
(SLSQP). Similar to BFGS, this is an iterative optimization method, but for constrained nonlinear
problems. SLSQP works by solving a sequence of quadratic programming subproblems, each of which
approximates the original nonlinear problem locally using a quadratic model of the objective function
and linear models of the constraints. SLSQP handles both equality and inequality constraints and
supports variable bounds [5]. This is suitable for the issue in question - running a minimization
scheme with a constraint to prevent undesired configurations as described in Section 3.5.

3.5 Angle constraint on lattice nodes

We notice that in a lattice where overlapping between links occurs, there are nodes at which the sum
of the angles created by them and their neighboring nodes exceed 360 degrees. Realistically, all of the
angles between consecutive edges around a node on a 2-dimensional surface should add up to exactly
360 degrees.

n∑
i=1

θi = 360◦

On this basis, we construct an equality constraint for the SLSQP function which holds the sum of the
angles in clockwise order around all nodes to 360 degrees. The optimization problem is then defined
as:

min
x

E(U)

subject to g(U) = 0,

20

with g(U) defined as:

V = X + U = ((x0 + u0), (x1 + u1), ..., (xn + un))

Let v⃗1, v⃗2 be two consecutive edges ∈ V

θ = (−atan2(v⃗1 × v⃗2, v⃗1 · v⃗2)) mod 2π

∑
nodes

(
360◦ −

n∑
i=1

θi

)2

3.5.1 Demonstration

We perform SLSQP on a 5x5 lattice similar to Figure 6, with an initial displacement U as a Gaussian
similar to that used for the BFGS minimization scheme (see Figure 10) at a magnitude of 0.7. With
this new minimization, we are successful in eliminating the overlapping seen when running BFGS with
the same initial displacement.

Figure 15: Lattice after SLSQP minimization at 0.7 Gaussian displacement magnitude.

However, this result is not an improvement from that of BFGS, but rather a trade-off. We initially
notice that this configuration is almost identical to the starting configuration before the optimization.
This means that the current lattice is unlikely to be at a minimal-energy state. We then verify this
assumption by running the perturbation test set up above on this result. It then becomes evident that
the minimization method has not been successful in yielding the desired result, as the test shows that
energy can still be reduced.

21

Figure 16: Perturbation test on SLSQP result.

Upon investigation, we hypothesize that the issue lies within the minimization scheme of not only
SLSQP, but also any other constrained nonlinear optimization method. These functions, despite being
able to work with constraints, are not capable of identifying another local minima when the one being
pursued leads to constraint violation. As minimization schemes in general follow a defined stepping
direction based on gradients for each initial displacement, they follow only one path to one nearest
minimal-energy configuration. If that configuration happens to be invalid, the minimization scheme
will stop right before violating the constraint, giving us a lattice that is not in equilibrium. This further
shows that not every initial displacement on a lattice will result in a still state. In other words, not
every starting configuration has a nearby valid minimal-energy state on a 2 dimensional surface.

3.6 Dynamic Relaxation

3.6.1 Overview

All of the above minimizing techniques seek to find the nearest minimal energy configuration of a
lattice given any perturbation. None of them, however, simulate how a lattice settles into these states
over time. Dynamic relaxation simulations provide this missing insight. We can relate displacement
and force with the equation

F = ma(t) = m · d

dt
v(t) = m · d2

dt2
u(t).

We established in section 2.1 that the force on node i is equal to the sum of the forceson its connecting
links. Since ui(t) is dependent on both the node i and time t, we can assume that m = 1 and write
the force on node i as ∑

j∈Ωi

2sij(sij − c)2 + 2s2ij(sij − c) = Fi(t) =
d2

dt2
ui(t).

We also already know Fi(t) to be the derivative of our energy function with respect to strain, from
section 2.1, so if E(s) is our energy function with respect to strain, then

d2

dt2
ui(t) =

d

ds

∑
j∈Ωi

E(sij).

Note that the equation is energy-conserving, hence does not achieve equilibrium.

22

To allow the lattice configuration to dissipate energy, we introduce a damping term in the equation
as follows.

m
d2

dt2
u(t) = F − γ

d

dt
u(t) (2)

where γ > 0 is a prescribed damping coefficient.
We can use this relationship to simulate how a lattice loses energy after a deformation.
(Scheme details go here).

3.6.2 Demonstration

Using once again a 5x5 lattice similar to Figure 12, we begin with a random starting configuration
with displacement at a magnitude of 0.6, shown in Figure 17. The arrows show the force at each node.

Figure 17: Lattice after random displacement at 0.6 magnitude, with potential energy of
2.3199953757196634

We then run dynamic relaxation for 1000 iterations with a damping value of 5e1, using the strain-
force function. The lattice’s change in displacement at various time-steps can be seen in Figures 18,
19, 20, and 21.

We also visualize the lattice’s total kinetic energy (Figure 22) and total potential energy (Figure
23), and we can observe that both approach 0 as expected.

The dynamic relaxation method has a much faster runtime than Gradient Descent, and it gives
insight into the lattice’s behavior as a function of time. However, this method still has several draw-
backs; for example, for some initial configurations, the simulation returns a lattice with overlapping

Figure 18: Lattice at iteration 70, with potential energy of 1.025356998857035.

23

Figure 19: Lattice at iteration 100, with potential energy of 0.6503751849775167.

Figure 20: Lattice at iteration 500, with potential energy of 0.10744732291951246

Figure 21: Lattice at iteration 990, with potential energy of 5.224055059038536e− 12.

24

Figure 22: Lattice’s total kinetic energy as a function of time.

Figure 23: Lattice’s total potential energy as a function of time.

25

links. It is also difficult to determine whether the energy of the lattice will reach zero or approach zero,
which could indicate either a non-zero minimal energy state or a non-minimized state. It also appears
that the program is not aware of each link’s second equilibrium (notice how every link in Figure 21
appears to be in short mode). Similar to our other minimization methods, Dynamic Relaxation has
its advantages and imperfections and can be considered as an alternative to Gradient Descent, BFGS,
and SLSQP to generate and evaluate minimal energy states.

4 Quasistatic solution to boundary value problems

We consider a 20×20 triangular lattice with the bc = 0.8 as the second local minimum for the bond
energy. We apply vertical extension by an amount of 2.5× bond length on the top and bottom two
layers of the lattice. The solution to the quasistatic problem are shown in Figure 24. Next, we apply an
extension and shearing displacement on the top and bottom two layers. The horizontal displacement
is also taken to be 2.5× bond length. The equilibrium solution is shown in Figure 25. The equilibrium
solutions are compared with the solution to the same lattice consisting of Hookean springs of the same
spring constant. It is noteworthy that the solution for the Hookean lattice is unique whereas there are
finitely many distinct solutions for the bistable lattice.

(a) (b) (c) (d)

Figure 24: Solutions to the quasistatic boundary value problem under vertical extension. The solution
for the Hookean lattice is shown in Figure 24(a). In Figures 24(b) to 24(d), we show three distinct
solutions to the same problem for the bistable lattice.

(a) (b) (c) (d)

Figure 25: Solution to the quasistatic boundary value problem under shear and extension. The solution
for the Hookean lattice is shown in Figure 25(a). In Figures 25(b) to 25(d), we show three distinct
solutions to the same problem for the bistable lattice.

5 Conditions on Triangular Lattice Configurations

Following the computer simulations, we observe that the movement of the lattice is possibly subject
to restriction by the coordination of the edges, or in other words, the length and connectivity of the
links. For instance, all bistable lattices theoretically have many possible still and minimal energy
configurations; we would like to say that a lattice with N links has 2N still states alone, since every
link has two modes. However, this hypothesis is limited by the lattice’s unique geometry, which
creates conditions on lattice behavior. The following section will focus on triangular bistable lattices,

26

drawing from Cherkaev’s 2010 paper describing necessary geometric conditions of a triangular lattice
[2]. Consider a hexagonal section of a triangular lattice as in Figure 26.

Figure 26: Simple hexagonal subsection of a triangular lattice.

Cherkaev states that the sum of the elongations of the spokes of the hexagon (the blue links) must
equal the sum of the elongations of the rims (the green links) at all times. If a lattice is compatible,
it follows Cherkaev’s geometrical conditions. We can extrapolate these conditions to apply to any
triangular lattice - if there exists a hexagonal subsection of the lattice, a deformation of a rim link
must be balanced with a deformation of a spoke link, and visa versa. If these conditions are not
fulfilled, the lattice breaks or exits the 2-dimensional plane.

This creates conditions on possible still states of the lattice - there must be an equal amount of
elongated rims and spokes. With this knowledge, it is possible to count all still states in a triangular
lattice consisting of a simple hexagon, like that in Figure 26. There exist seven possible variations of
still states:

1. All links are in short mode;

2. All links are in long mode;

3. One rim and one spoke are in long mode while the rest are in short mode;

4. Two rims and two spokes are in long mode while the rest are in short mode;

5. Three rims and three spokes are in long mode while the rest are in short mode;

6. Two rims and two spokes are in short mode while the rest are in long mode; and

7. One rim and one spoke are in short mode while the rest are in long mode.

Though there is just one possible compatible configuration for variations 1 and 2, there are multiple
compatible configurations possible with variations 3-7. We can calculate these by multiplying the total
possible rim combinations with the total possible spoke combinations5:

3. (6C1)
2 = 62 = 36;

4. (6C2)
2 = 152 = 225;

5. (6C3)
2 = 202 = 400;

6. (6C2)
2 = 152 = 225; and

7. (6C1)
2 = 62 = 36.

5For example, for variation 3, we select one out of 6 rims and one out of 6 spokes, giving us 6C1 ·6 C1 or
(6

C1

)2
.

27

Summing up, we have that the total number of still states for a simple hexagon triangular lattice is

1 + 1 + 36 + 225 + 400 + 225 + 36 = 924.

This being a rather large number gives us a sense of the sheer magnitude of the total number of still
states for a lattice as simple as Figure 26. A larger lattice containing more hexagons would have more
links in the lattice, which means means more possible links to manipulate, giving rise to many more
possible still state configurations.

Figure 27: Triangular lattice of two hexagons.

Consider, for example, the lattice in Figure 27, comprised of two overlapping hexagons that have
5 shared links - specifically, links 5, 6, 10, 14, and 15. We will refer to all other links in the lattice
as free links. To sum up the total number of still states for this lattice, we assume that the leftmost
hexagon (we will call it Hexagon 1) can be in any of its 924 configurations, and we determine which
configurations of the right hexagon (Hexagon 2) are compatible.

Given any configuration of Hexagon 1, the five links shared between Hexagons 1 and 2 mean that
Hexagon 2’s still states are restricted. Using a counting argument, we will determine how many still
states Hexagon 2 has given a configuration of its shared links. We can categorize configurations of the
shared links in terms of the 2 shared rims and 3 shared spokes of Hexagon 2:

1. All 2 rims and all 3 spokes short;

2. 2 rims and 2 spokes short, 1 spoke long;

3. 2 rims and 1 spoke short, 2 spokes long;

4. 2 rims short, 3 spokes long;

5. All 2 rims and all 3 spokes long;

6. 2 rims and 2 spokes long, 1 spoke short;

7. 2 rims and 1 spoke long, 2 spokes short;

8. 2 rims long, 3 spokes short;

9. 1 rim and 3 spokes short, 1 rim long;

10. 1 rim and 2 spokes short, 1 rim and 1 spoke long;

11. 1 rim and 1 spoke short, 1 rim and 2 spokes long; and

12. 1 rim short, 1 rim and 3 spokes long.

28

In essence, for each of the 924 configurations of Hexagon 1, the five shared links will be locked in one
of these 12 configurations. Now, given any of these 12 configurations of the shared links, we can count
how many out of Hexagon 2’s 924 combinations are compatible by counting configurations of the free
links6:

1.
(4
C0 ·3 C0

)
+
(4
C1 ·3 C1

)
+
(4
C2 ·3 C2

)
+
(4
C3 ·3 C3

)
= 35

2.
(4
C1

)
+
(4
C2 ·3 C1

)
+
(4
C3 ·3 C2

)
+
(4
C4 ·3 C2

)
= 35

3.
(4
C2

)
+
(4
C3 ·3 C1

)
+
(4
C4 ·3 C2

)
= 21

4.
(4
C3

)
+
(4
C4 ·3 C1

)
= 7

5.
(4
C1

)
+
(4
C2 ·3 C1

)
+
(4
C3 ·3 C2

)
+
(4
C4 ·3 C3

)
= 35

6.
(4
C0 ·3 C0

)
+
(4
C1 ·3 C1

)
+
(4
C2 ·3 C2

)
+
(4
C3 ·3 C3

)
= 35

7.
(3
C1

)
+
(4
C1 ·3 C2

)
+
(4
C2 ·3 C3

)
= 21

8.
(3
C2

)
+
(4
C1 ·3 C3

)
= 7

9.
(3
C1

)
+
(4
C1 ·3 C2

)
+
(4
C2 ·3 C3

)
= 21

10.
(4
C0 ·3 C0

)
+
(4
C1 ·3 C1

)
+
(4
C2 ·3 C2

)
+
(4
C3 ·3 C3

)
= 35

11.
(4
C1

)
+
(4
C2 ·3 C1

)
+
(4
C3 ·3 C2

)
+
(4
C4 ·3 C3

)
= 35

12.
(4
C2

)
+
(4
C3 ·3 C1

)
+
(4
C4 ·3 C2

)
= 21

Finally, to sum up all still states of the lattice in Figure 27, we need to determine which configurations
of Hexagon 2 occur with each of the 924 configurations of Hexagon 1. As previously established,
Hexagon 1 could have all links short, all links long, only 1 rim and 1 spoke long, 2 rims and 2 spokes
long, 3 rims and 3 spokes long, 4 rims and 4 spokes long, or 5 rims and 5 spokes long. If all links of
Hexagon 1 are short, then all shared links are short, and our lattice falls into the first category in the
list above. Thus, there exist 35 still states where all links in Hexagon 1 are short. We can say the
same if all links in Hexagon 1 are long.

There are 36 configurations where one rim and one spoke of Hexagon 1 are long and everything
else is short, each of which influences the shared links differently. Of these 36 configurations7,

• 4C1 ·3 C1 = 12 do not elongate the shared links, falling into Category 1;

• 2 ·
(3
C1

)
= 6 have only link 6 or 15 elongated, falling into Category 2 in the list above;

• 2 ·
(4
C1

)
= 8 have only link 5 or 14 elongated, falling into Category 9;

• 4C1 = 4 have only link 10 elongated, falling into Category 2;

• 2 · 2 ·
(4
C0 ·3 C0

)
= 4 have link 5 or 14 AND link 6 or 15 elongated, falling into Category 10; and

• 2 ·
(4
C0 ·3 C3

)
= 2 have link 10 and either link 6 or 15 elongated, falling into Category 3.

6For example, for category 1, we have all 5 shared links short, and we need to determine how the four free rims and
three free spokes can behave. We can choose no rims or spokes to be long (4C0 ·3 C0), we can have one, two, or three of
each long. We cannot have four of each long, because three spokes are short by hypothesis.

7Each bullet point represents a possible combination of elongated shared links. By hypothesis, we have one rim and
one spoke of Hexagon 1 long, so for each bullet point we determine how many free rims and/or spokes must be elongated
to meet this hypothesis. For example, for the first bullet point, none of the shared links are elongated, so we must
elongate one out of the four free rims and one out of the three free spokes of Hexagon 1. Each bullet point is then
categorized according to the shared links’ configuration’s impact on Hexagon 2. This logic is maintained when supposing
that two rims and two spokes of Hexagon 1, as well as three rims and three spokes of Hexagon 1, are elongated.

29

For each of these configurations, we can multiply by the number of Hexagon 2’s configurations that
are compatible:

(12 · 35) + (6 · 35) + (8 · 21) + (4 · 35) + (4 · 35) + (2 · 21) = 1120.

Thus, there exist 1,120 still states of the lattice when Hexagon 1 has one rim and one spoke elongated.
Because of the inherent symmetry in the hexagon, we find that this is the same result as when Hexagon
1 has five rims and five spokes elongated.

There are 225 configurations where two rims and two spokes of Hexagon 1 are long and everything
else is short. Of these 225 configurations,

• 4C2 ·3 C2 = 18 do not elongate the shared links, falling into Category 1;

• 2 ·
(4
C1 ·3 C2

)
= 24 have only link 6 or 15 elongated, falling into Category 2;

• 3C2 = 3 have both links 6 and 15 elongated, falling into Category 3;

• 2 ·
(4
C2 ·3 C1

)
= 36 have only either link 5 or 14 elongated, falling into Category 9;

• 4C2 = 6 have both links 5 and 14 elongated, falling into Category 8;

• 4C2 ·3 C1 = 18 have only link 10 elongated, falling into Category 2;

• 2 ·
(4
C2

)
= 12 have either link 5 or 14 AND link 10 elongated, falling into Category 10;

• 2 · 2 ·
(4
C1 ·3 C1

)
= 48 have either link 6 or 15 and either link 5 or 14 elongated, falling into

Category 10;

• 2 ·
(4
C1 ·3 C1

)
= 24 have either link 6 or 15 and link 10 elongated, falling into Category 3;

• 2 ·
(3
C1

)
= 6 have links 6, 15, and either 5 or 14 elongated, falling into Category 11;

• 3C1 = 3 have links 6, 15, and 10 elongated, falling into Category 4;

• 2 ·
(4
C1

)
= 8 have links 5, 14, and either 6 or 15 elongated, falling into Category 7;

• 2 · 2 ·
(4
C1

)
= 16 have either link 6 or 15, either link 5 or 14, and link 10 elongated, falling into

Category 11;

• 4C0 ·3 C0 = 1 has links 5, 6, 14, and 15 elongated, falling into Category 6; and

• 2 ·
(4
C0 ·3 C0

)
= 2 have links 5, 6, 10, and either 5 or 14 elongated, falling into Category 12.

Similar to before, we can multiply each of these values by the number of Hexagon 2’s configurations
for which they are compatible:

(18 · 35) + (24 · 35) + (3 · 21) + (36 · 21) + (6 · 7) + (18 · 35) + (12 · 35) + (48 · 35) + (24 · 21)
+ (6 · 35) + (3 · 7) + (8 · 21) + (16 · 35) + (1 · 35) + (2 · 21)
= 6601

Thus, there exist 6,601 still states of the lattice when Hexagon 1 has two rims and two spokes elongated.
Just like in the previous case, symmetry gives us that there also exists 6,601 still states of lattice when
Hexagon 1 has four rims and four spokes elongated.

There are 400 configurations where three rims and three spokes of Hexagon 1 are long and everything
else is short. Of these 400 configurations,

• 4C3 ·3 C3 = 4 do not elongate the shared links, falling into Category 1;

• 2 ·
(4
C2 ·3 C3

)
= 12 have only link 6 or 15 elongated, falling into Category 2;

• 4C1 ·3 C3 = 4 have both links 6 and 15 elongated, falling into Category 3;

30

• 2 ·
(4
C3 ·3 C2

)
= 24 have only link 5 or 14 long, falling into Category 9;

• 4C3 ·3 C1 = 12 have both links 5 and 14 long, falling into Category 8;

• 4C3 ·3 C2 = 12 have only link 10 elongated, falling into Category 2;

• 2 ·
(4
C3 ·3 C1

)
= 24 have link 10 and either link 5 or 14 long, falling into Category 10;

• 4C3 = 4 have links 5, 10, and 14 elongated, falling into Category 7;

• 2 · 2 ·
(4
C2 ·3 C2

)
= 72 have either link 6 or 15 and either link 5 or 14 elongated, falling into

Category 10;

• 2 ·
(4
C2 ·3 C2

)
= 36 have link 10 and either link 6 or 15 elongated, falling into Category 3;

• 2 ·
(4
C1 ·3 C2

)
= 24 have links 6, 15, and either link 5 or 14 elongated, falling into Category 11;

• 4C1 ·3 C2 = 12 have links 6, 15, and 10 elongated, falling into Category 4;

• 2 ·
(4
C2 ·3 C1

)
= 36 have links 5, 14, and either link 6 or 15 elongated, falling into Category 7;

• 2 · 2 ·
(4
C2 ·3 C1

)
= 72 have link 10, either link 6 or 15, and either link 5 or 14 elongated, falling

into Category 11;

• 4C1 ·3 C1 = 12 have links 5, 6, 14, and 15 elongated, falling into Category 6;

• 2 ·
(4
C1 ·3 C1

)
= 24 have links 6, 10, 15, and either link 5 or 14 elongated, falling into Category

12;

• 2 ·
(4
C2

)
= 12 have links 5, 10, 14, and either link 6 or 10 elongated, falling into Category 6; and

• 4C1 = 4 have links 5, 6, 10, 14, and 15 elongated, falling into Category 5.

Once again, we can multiply each of these values by the number of configurations of Hexagon 2 that
are compatible:

(4 · 35) + (12 · 35) + (4 · 21) + (24 · 21) + (12 · 7) + (12 · 35) + (24 · 35) + (4 · 21)
+ (72 · 35) + (36 · 21) + (24 · 35) + (12 · 7) + (36 · 21) + (72 · 35) + (12 · 35) + (24 · 21)
+ (12 · 35) + (4 · 35)
= 11536

Thus, there exist 11,536 still states of the lattice where three rims and three spokes of Hexagon 1 are
elongated.

For each of the 924 possible still configurations of Hexagon 1, we have found how many ways
Hexagon 2 can also be still. To get the total number of still states in the lattice, we sum these up:

(2 · 35) + (2 · 1120) + (2 · 6601) + 11536 = 27048

We can conclude that there are 27,048 still configurations of the lattice in Figure 27. This is a fraction
of the early estimate of 219 = 524288 still states for a lattice with 19 links, which gives an idea of the
impact overlapping hexagons have on one another. Future research could look at counting the still
states of larger lattices using similar counting arguments.

Larger lattices not only contain many overlapping hexagons, but often their configurations create
larger hexagons that also must follow Cherkaev’s compatibility conditions. For example, consider an
expanded version of our simple hexagon-shaped triangular lattice, depicted in Figure 28. The lattice
contains 42 links, and within the large green hexagon are 7 smaller hexagons (example given in yellow).
Each hexagon is subject to Cherkaev’s conditions. We can prove that if all of the smaller hexagons are
in compatible still states - that is, that it meets Cherkaev’s conditions and each link is either in long
or short mode - then the large hexagon is in a compatible still state.

31

Figure 28: Large hexagonal subsection of a triangular lattice.

First, suppose all of the smaller hexagons are in compatible still states. This assumption gives us
the following equations (note that 1, for example, does not mean the numerical value of 1, but rather
the elongation of link 1):

1 + 3 + 6 + 13 + 16 + 21 = 4 + 5 + 9 + 10 + 14 + 15

2 + 5 + 8 + 15 + 18 + 22 = 6 + 7 + 10 + 11 + 16 + 17

9 + 12 + 15 + 24 + 27 + 32 = 13 + 14 + 20 + 21 + 25 + 26

10 + 14 + 17 + 26 + 29 + 33 = 15 + 16 + 21 + 22 + 27 + 28

11 + 16 + 19 + 28 + 31 + 34 = 17 + 18 + 22 + 23 + 29 + 30

21 + 25 + 28 + 35 + 38 + 41 = 26 + 27 + 32 + 33 + 36 + 37

22 + 27 + 30 + 37 + 40 + 42 = 28 + 29 + 33 + 34 + 38 + 39.

Note also that because each hexagon is in its still state, every link is either short or long. We assume
that every link must be elongated the same length - call it l - to be in long mode, so each term in
every equality above has a value of either 0 or l. Now observe that when we sum all seven equalities
and cancel terms that appear on both sides of the equality,

1 + 3 + 6 + 13 + 16 + 21 = 4 + 5 + 9 + 10 + 14 + 15

+
(
2 + 5 + 8 + 15 + 18 + 22 = 6 + 7 + 10 + 11 + 16 + 17

)
1 + 2 + 3 + 8 + 13 + 18 + 21 + 22 = 4 + 7 + 9 + 2(10) + 11 + 14 + 17

+
(
9 + 12 + 15 + 24 + 27 + 32 = 13 + 14 + 20 + 21 + 25 + 26

)
1 + 2 + 3 + 8 + 12 + 15 + 18 + 22 + 24 + 27 + 32 = 4 + 7 + 2(10) + 11 + 2(14) + 17 + 20 + 25 + 26

+
(
10 + 14 + 17 + 26 + 29 + 33 = 15 + 16 + 21 + 22 + 27 + 28

)
1 + 2 + 3 + 8 + 12 + 18 + 24 + 29 + 32 + 33 = 4 + 7 + 10 + 11 + 14 + 16 + 20 + 21 + 25 + 28

+
(
11 + 16 + 19 + 28 + 31 + 34 = 17 + 18 + 22 + 23 + 29 + 30)

1 + 2 + 3 + 8 + 12 + 19 + 24 + 31 + 32 + 33 + 34 = 4 + 7 + 10 + 14 + 17 + 20 + 21 + 22 + 23 + 25 + 30

+
(
21 + 25 + 28 + 35 + 38 + 41 = 26 + 27 + 32 + 33 + 36 + 37

)
1 + 2 + 3 + 8 + 12 + 19 + 24 + 28 + 31 + 34 + 35 + 38 + 41 = 4 + 7 + 10 + 14 + 17 + 20 + 22 + 23 + 26

+ 27 + 30 + 36 + 37

+
(
22 + 27 + 30 + 37 + 40 + 42 = 28 + 29 + 33 + 34 + 38 + 39)

1 + 2 + 3 + 8 + 12 + 19 + 24 + 31 + 35 + 40 + 41 + 42 = 4 + 7 + 10 + 14 + 17 + 20 + 23 + 26 + 29 + 33 + 36 + 39,

32

we get one equality with twelve terms on each side. On the left, each term represents a link that makes
up the rim of the large hexagon. On the right, six terms represent links that make up the spokes of
the large hexagon (respectively, 4, 7, 20, 23, 36, and 39), and the other six terms (10, 14, 17, 26, 29,
and 33) make up the rim of the center hexagon. We know by hypothesis that the total elongation of
the center hexagon’s rims is equal to the total elongation of its spokes; so by substitution, we get

1 + 2 + 3 + 8 + 12 + 19 + 24 + 31 + 35 + 40 + 41 + 42

= 4 + 7 + 15 + 16 + 20 + 21 + 22 + 23 + 27 + 28 + 36 + 39,

and the large hexagon is compatible according to Cherkaev’s conditions. Recall that each term in this
equality has a value of 0 or l, so the links that make up the large hexagon have 0 energy. We can
therefore conclude that if each of the smaller hexagons are in compatible still states, then so is the
large hexagon.

It is important to note that the converse of this statement is NOT true - a large compatible
hexagon does imply that all small hexagons are balanced, but if the large hexagon is in a still state,
it does not imply that all the small hexagons are likewise in still configurations. For example, if the
large hexagon is in a compatible still state, we can have links 5 and 6 equally elongated to a length
between 0 and l without violating any geometric conditions. Similarly, the links that make up the rim
of the center hexagon could be at any elongation between 0 and l, as long as their sum is equal to the
elongation of the spokes. This will have interesting implications in future efforts to sum up the total
number of still states in this lattice.

While all of the above pertains strictly to triangular lattices, it seems likely that similar conditions
can be found for square lattices, Penrose lattices, and others. Efforts to find such configurations and
sum the still states of these lattices will be crucial in broadening our understanding of bistable lattice
behavior.

6 3D Printed Bistable Structure

6.1 Bistable Link

Our team sets out to prove whether this condition on lattice behavior exists. Using 3D printers, we
are able to create a bistable structure, which is then used to create a bistable lattice. The design of a
bistable edge is below:

33

Figure 29: Bistable link design

Figure 30: 3D-printed bistable link in short mode

34

Figure 31: 3D-printed bistable link in long mode

6.2 Bistable Lattice

With the bistable links printed, we construct a triangular lattice in a hexagonal shape:

Figure 32: A lattice constructed by 3D-printed bistable links

Figure 33: An alternative lattice constructed by 3D-printed bistable links

35

Notice that the two lattices have two different node structure. These are useful for the investigation
of still states in a lattice. We begin the experiment with the first lattice by extending the very middle
edge to its long mode of the first lattice.

Figure 34: 3D-printed lattice after displacing the middle edge

We can observe that the middle edge acts as a shared spoke for two hexagons. By Cherkaev’s
geometric condition, the total elongation of the rims must equal to that of the spokes in each hexagon.
Therefore, as the mutual spoke is extended, each hexagon extends one of their rims in order to maintain
total energy at 0. This configuration is what we consider as a valid still state. However, the mechanical
flaw of this lattice manifests in some configurations.

Figure 35: 3D-printed lattice after displacing the right-most spoke

This configuration, while apparently stable, is not a still state. By observation, the edges neighbor-
ing the extended one are pulled out by a small amount, meaning this current lattice has a potential
energy value larger than 0. Hence, this cannot be considered a still state. We hypothesize that the
distance between the long and short mode of each edge is not significant enough to force another
edge to change when one violates Cherkaev’s condition. Nevertheless, extending the distance will
simultaneously widen the edge. Therefore, we opt for the second lattice design (Figure 33).

This lattice, instead of automatically attempt to correct itself to a still state in response to dis-
placement such as the prior lattice, will indicate whether a configuration is in a valid equilibrium or
not by the rotation of the nodes. We test this out by extending one spoke of the hexagon.

36

Figure 36: 3D-printed lattice after displacing the right-most spoke

From the picture, the middle node is rotated, indicating that this is not a valid zero-energy config-
uration. We also attempt to extend a rim edge.

Figure 37: 3D-printed lattice after displacing the right-most spoke

We notice that a the left-most node is rotated, confirming the rim-spoke condition on lattice
equilibrium. Ultimately, we extend one spoke and one rim edge.

37

Figure 38: 3D-printed lattice after displacing the right-most spoke

After confirming that no node is rotated, we conclude that this is a valid still state, again, confirming
the established condition.

7 Discussion

7.1 The Double-well Issue of a Bistable Edge

Although bistable elements are known for having two distinct stable equilibria, a singular bistable
edge often behaves similarly to a conventional elastic material when considered in isolation. In a
typical energy model, the bistability arises from a double-well potential: the energy landscape has
two minima (representing the short and long modes) separated by a local maximum. This maximum
corresponds to an unstable equilibrium, effectively dividing the energy profile into two elastic regimes.
When the applied strain on a bistable link lies between the first critical point (near zero) and the
central maximum, the system will tend to relax back into the short stable state. In contrast, if the
strain exceeds the central maximum and approaches the second critical point, the link will instead
snap into the long (stretched) stable state. In either regime, the behavior is locally elastic—meaning
small perturbations produce proportional restoring forces—but globally, the system remains nonlinear
and discontinuous due to the presence of this unstable transition point.

This non-convexity of the energy landscape introduces significant challenges for mathematical op-
timization. Standard minimization routines, such as those used in the computational simulations, are
typically gradient-based and local in nature. As a result, they are often ”blind” to the existence of
alternative stable configurations separated by an energy barrier. For example, if a minimizer starts
from an initial strain that lies below the energy maximum, it will converge to the short mode with-
out detecting the possibility of a long mode on the other side. Conversely, if the initial condition
lies above the maximum, the optimizer will settle into the long mode, entirely disregarding the short
configuration. This characteristic of bistable elements—appearing elastic within each stable basin but
exhibiting global nonlinearity—complicates efforts to find global energy minima or to predict system
behavior under varying loads. It underscores the need for more sophisticated optimization techniques
or initialization strategies that can account for the full shape of the energy landscape, rather than
merely following the local gradient.

Therefore, when considering the entire lattice composed of many bistable links, this local behav-
ior becomes a global challenge: the minimization process frequently produces impractical or invalid
configurations. The optimizer may converge to a state that appears locally stable for each individual
link but is inconsistent with the expected structural or mechanical properties of the full system. It is,
again, ”blind” towards the other critical point because of the energy barrier. These configurations may
violate global compatibility, symmetry, or boundary conditions, leading to results that are meaningless
or structurally impossible on a 2 dimensional plane. This emphasizes the importance of global insight
or constraint-guided methods when attempting to design or simulate bistable lattices which we have
yet been able to account for in our minimization problem.

38

7.2 The Restriction on Degrees of Freedom by Connectivity

In discrete lattice systems, the connectivity of a node—defined by the number of edges it shares with
neighboring nodes—plays a critical role in determining both the system’s mechanical flexibility and
the number of admissible still states (configurations with total energy value at 0). Higher connectivity
imposes more geometric constraints, directly reducing the degrees of freedom of each node and edge.
This is a direct consequence of constraint counting principles such as Maxwell’s rule, which relates the
number of constraints (edges) to the number of degrees of freedom in a mechanical network [1].

Mechanically, a node can only move within the limits imposed by its attached edges. As connectivity
increases, the movement of any single node necessarily causes disturbance of multiple connected edges,
which in turn affects neighboring nodes. Rather than simply adapting to this motion, neighboring
nodes typically exert restorative (counteracting) forces to maintain their own equilibrium, thereby
suppressing local movement and reinforcing rigidity.

In contrast, under-constrained lattices (with low connectivity) provide greater freedom for indi-
vidual node motion. This relaxed structure allows the lattice to accommodate deformations without
significant energy cost. As a result, such systems exhibit increased mechanical flexibility and can allow
for the lattice’s transition into a larger number of still states, especially in bistable lattices, where each
link may rest in two different equilibrium positions [4].

This effect becomes particularly pronounced in multi-stable systems in general, bistable in specific.
In highly connected regions, nodes act as mechanical anchors, enforcing geometric compatibility across
adjacent links. This compatibility filters out combinations of bistable configurations that, while locally
stable, are globally incompatible in terms of geometry. Furthermore, if one edge flips to a different
equilibrium, the resulting internal stresses from neighboring elements may be strong enough to pre-
vent relaxation, leading to geometrically compatible but energetically unfavorable states. Ultimately,
this suppresses configurational diversity, and the number of valid still states decreases sharply with
increasing connectivity.

In one instance we provide above where we attempt to count the number of still states in a hexagonal
subsection of a triangular lattice, this inverse relationship between connectivity and number of still
states manifest in the rim-spoke rule. The rule states that for a hexagonal lattice, the total elongation
of the rims (edges on the rim of the hexagon) is equal to the total elongation of the spokes (edges
inside the hexagon) [2]. Therefore, the number of possible zero-energy configurations are limited,
exponentially smaller than the theoretical 2n value. This rule derives from the restrictions each edges
put on another, in this case, caused by the heavy connectivity of a triangular lattice.

7.3 The Effect of Organization

We have also found that different lattice overall shapes show distinctive behavior under the same
displacement. To demonstrate, we generate two triangular lattices consisting of 36 nodes: one is a
9× 4 lattice, the other is a 6× 6 lattice.

39

(a) 9x4 triangular lattice

(b) 6x6 triangular lattice

Both lattices are then subject to an initial displacement of a Gaussian displacement at 0.7 magni-
tude. We run the BFGS minimizer on the two structures, obtaining the following results:

(c) Minimal-energy, valid configuration

(d) Minimal-energy, invalid configuration

We hypothesize that the difference in results (despite both being a triangular lattice) is caused
by how the nodes are organized in a lattice. Observing the two lattices, we notice that the layout of

40

the nodes contributes to the difference in the number of nodes inside the structure and those on the
rim of the lattice between the two structures. This, in turn, changes the number of interconnected
hexagons (sub-sectional hexagons which share edges and nodes with another), which ultimately affects
the connectivity of the lattice. It can also be observed that the 9 × 4 lattice has fewer edges than
the 6× 6 lattice. Nevertheless, we also observe more deviations with different lattices under the same
displacement:

(e) Square lattice (lower node connectivity) (f) Penrose lattice (lower node connectivity)

(g) Square lattice after Gaussian displacement
at magnitude 0.7 (invalid)

(h) Penrose lattice after Gaussian displacement
at magnitude 0.7 (valid)

These results show that we cannot expect lattices with more still states to produce a minimal-energy
configuration from an initial displacement with which a more restricted lattice can. This underscores
that the geometric layout of a lattice is also an active determinant of its mechanical response to different
displacements.

7.4 Existence of Non-zero Minimal-energy States

Throughout our research, one of our by-products worth looking into are minimal-energy states that
are non-zero. These are the results from the minimization schemes, whose total energy is at a local
minima, but does not equal 0. This indicates that these configurations are at equilibrium, however,
still possesses energy. Here are some examples:

41

Figure 39: Total energy: 0.0535732.

Figure 40: Total energy: 0.12184345.

Figure 41: Total energy: 0.090107329.

Although these configurations are not the focus point of the research, their existence is unexpected

42

and intriguing. The team hopes that there will be further investigation into this in future research.

8 Conclusion

Our research revealed many different characteristics of bistable lattices that provide context for future
research. Numerical simulations confirmed that when a force deforms a lattice and increase its energy,
the structure will then settle into its nearest minimal-energy state, minimizing the total energy of the
lattice. These simulations also provide evidence that there exist minimal energy states where the total
energy of the lattice is non-zero. We developed counting arguments to quantify a triangular lattice’s
total still states based on the lattice’s geometric constraints, and for triangular lattices with identical,
overlapping hexagonal subsections, we have shown that stillness and compatibility on the micro scale
necessarily results in the the same at the macro scale.

From these results, many future research questions emerge. The existence of non-zero minimal
energy states warrants further investigation; our numerical minimization techniques suggest this to be
the result of a deformed lattice being closest to an invalid 0-energy configuration, but more evidence is
needed to draw this conclusion. It is also worthwhile to develop more generalized counting arguments
that would allow us to sum all still states of any lattice. This could involve generalizing our counting
argument to apply to any triangular lattice and developing similar arguments for square and Penrose
lattices, or alternatively one could develop a technique based on the effects of a lattice’s organization
and connectivity. It could also be advantageous investigate whether we can draw more conclusions
about the lattice at certain deformations from the Hessian for our energy function and its eigenvalues.

All of these research directions would help to further our understanding of bistable lattice behav-
ior, not only helping the mathematicians who work with them but also those in any industry that
benefits from understanding the model. Therefore, investigations into lattice behavior for real-world
applications should be framework-specific, taking into account the connectivity, structural geometry,
and contextual displacement (force applied) in an effort to stay grounded in its applied context.

References

[1] C. R. Calladine. Buckminster fuller’s ”tensegrity” structures and clerk maxwell’s rules for the
construction of stiff frames. International Journal of Solids and Structures, 14(2):161–172, 1978.

[2] A. Cherkaev, A. Kouznetsov, and A. Panchenko. Still states of bistable lattices, compatibility, and
phase transition. Springer Nature, 22:421–444, 2010.

[3] P. Ducarme, M. van Hecke, and J. T. Overvelde. Exotic mechanical properties enabled by coun-
tersnapping instabilities. Proceedings of the National Academy of Sciences of the United States of
America, 122(16), 2025.

[4] C. L. Kane and T. C. Lubensky. Topological boundary modes in isostatic lattices. Nature Physics,
10(1):39–45, 2014. doi: 10.1038/nphys2835.

[5] D. Kraft. A software package for sequential quadratic programming. Technical Report DFVLR-FB
88-28, DLR German Aerospace Center, Institute for Flight Mechanics, Köln, Germany, 1988.

[6] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–
272, 2020. doi: 10.1038/s41592-019-0686-2.

[7] C. Zhang, X. Yin, R. Chen, K. Ju, Y. Hao, T. Wu, J. Sun, H. Yang, and Y. Xu. A review on
reprogrammable bistable structures. Smart Materials and Structures, 33, 2024.

43

	Introduction
	Bistability and Double-Well Potential
	Energy and Force Functions
	Energy surface

	Minimization Schemes
	Setting Up a Minimization Problem
	Computing the Gradient
	Computing the Hessian Matrix
	Summary

	Gradient Descent
	Overview
	Demonstration

	Broyden-Fletcher-Goldfarb-Shanno (BFGS)
	Overview
	Demonstration

	Sequential Least Squares Quadratic Programming (SLSQP)
	Overview

	Angle constraint on lattice nodes
	Demonstration

	Dynamic Relaxation
	Overview
	Demonstration

	Quasistatic solution to boundary value problems
	Conditions on Triangular Lattice Configurations
	3D Printed Bistable Structure
	Bistable Link
	Bistable Lattice

	Discussion
	The Double-well Issue of a Bistable Edge
	The Restriction on Degrees of Freedom by Connectivity
	The Effect of Organization
	Existence of Non-zero Minimal-energy States

	Conclusion

