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Abstract

Introduced by Silling in 2000, peridynamics provides an alternative approach to model de-
formations of solid materials using integral equations instead of differential equations used
in the classical theory of continuum mechanics. In peridynamic simulations of material
failure, cracks appear naturally and propagate as a consequence of bond-breaking between
material points. In this report, we consider axisymmetric problems where the geometry,
external loading, and body forces are invariant under rotation about a given axis of sym-
metry, resulting in axisymmetric deformation of all material points. We start with a full
three-dimensional peridynamic model with a linear pairwise force function. Exploiting
axisymmetry, we incorporate the contribution of out-of-plane bond forces into an effec-
tive two-dimensional pairwise force function and derive a corresponding two-dimensional
model on a representative half plane passing through the axis of symmetry. This results in
a significant reduction of computational cost.



Reduction of three-dimensional axisymmetric models to two dimensions

in peridynamics

1 Introduction

Understanding how solid materials deform and fail under external loading conditions has
been a long-standing area of research for scientists and engineers for centuries. The classical
approach is to treat the solids as a continuum and model the displacements of material points as
a solution to a differential equation. This approach works well for small deformations. How-
ever, due to the differential formulation, the classical theory fails to describe material behavior
when the deformation field is non-differentiable at certain material points, for example, when a
fracture is formed.

Recently, the development of peridynamics has become useful to address the limitations
of classical theory of continuum mechanics. Introduced in [6], the peridynamic formulation
is non-local in nature, and it assumes that every material point interacts with its neighbors
via a bond force. The internal force on each material point is the resultant force exerted by
all material points within its neighborhood. Since the peridynamic equation of motion is an
integral equation, instead of a differential one, it can accommodate deformation fields which
are discontinuous, in particular non-differentiable. Peridynamics has been used to model crack

formation and crack branching [7, 3], among many other fracture problems.

2 Description of the project

In this project, we consider three-dimensional axisymmetric problems, where the geometry
of the material is symmetric about an axis of symmetry and the external loading conditions are
such that the deformation fields are symmetric about the same axis of symmetry. These types
of problems occur naturally in various situations, such as expansion of a hollow cylinder under

uniform internal pressure [5], the single-fibre pull-out test [2], formation of Hertzian cracks on
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impact [1], etc. Since the displacement of the material points are symmetric about the axis of
symmetry, say the z-axis, it is enough to model the displacements of all points on a represen-
tative r-z plane, where r is the radial component associated with the material points relative to
the axis of symmetry. However, the peridynamic neighborhood of each material point on that
plane extends beyond the plane itself. Thus, we incorporate the contributions of out-of-plane
bonds into the resultant force exerted on each point on the representative r-z plane, modifying
the pairwise force function between any two points on the plane appropriately. In this way, we
reduce a full three-dimensional peridynamic equation of motion into a two-dimensional model
while effectively incorporating out-of-plane interactions. This results in significant reduction of

computational cost to simulate a three-dimensional axisymmetric peridynamic problem.

2.1 Mathematical background

We start with the representation of vectors and tensors in different coordinate systems. Since
the equation of motion changes depending on the choice of coordinate system, we specify the

basis in which we represent each vector and tensor.

Definition 1. Let B = {e},ey,e3} be an orthonormal basis of R3. For any vector u € R3, the

representation of u in the basis B is defined as the column vector [ulp = [u; up u3]T, where

ui =u-e; for i =1,2,3. [u]p is also called the representation of u in the basis B. Note that

u= il uie;. Define BQB := {e,- ®ej}?,j:1' The representation of a tensor T = )%, 1 Tuer Qe
= =

)

of order 2 with respect to the basis B® B is defined as the 3 x 3 matrix

T Tz, Tis
[T|por =

T3y ... Tx3

In Theorem 1 below [4], we present the change of basis formula for representations of

vectors and tensors.



Theorem 1. Let B= {e},e;,e3} and R = {r|,rp,r3} be two orthonormal bases of R3. Let [V]p=
3
vi va w)l and Vg =[r ¥» 73]7. Then, [v]gr = Q[v]p, where 1, = ¥ Ok je;, for k =
j=1
3 3
1,2,3. Let C be a tensor of ordernwithC= Y, C; ;€ ® - ®e, = Y Dj, .., i, ®

i1yeenyin=1 i1yeeesin=1

3
- QT Then, Cil...in = Y Qj1i|sziz .. .Qj"inDjlmj”for i1,-..,ip=1,2,3.
i

Iyeensln=

2.2 Classical theory

Now, we briefly review the theory of classical linear elasticity. From now on, we shall
assume that B = {e,, e, e3} is the Euclidean basis of R? and Q € R?is a homogeneous isotropic
body (i.e., the material properties are invariant under any orthogonal change of basis) with mass
density p. By dQ, we denote the boundary of the body. Let b be a prescribed body force density
and o be a stress tensor. For a small deformation u = )3: uie; € R3, the equation of motion in

i=1
classical linear elasticity, also known as Cauchy momentum equation, can be written as

82u,- do;  Jdop 03
_ bi, i=1273
P BTV aXI + 8x2 <= ax3 +bi, 1 3“1ty

where the stress-strain relation from the generalized Hooke’s law is given by

—cm_ _JL +2u A A 0 0 O_ _811T
O A A+2u A 0 0 Of | én
033 A A A+2u 0 0 Of | &3
o12 N 0 0 0 w0 0| |2¢ep
03 0 0 0 0 p 0| |2&3

LO‘31_ I 0 0 0 0 0 K L2831_

and the components of infinitesimal strain tensor € are given by

8"—1 8u,~+%
U—2 8xj 8x,~ ’
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where A and u are known as the Lamé constants of the material.

2.3 Cylindrical coordinate system

The cylindrical coordinate system is a natural choice for objects that have rotational symme-
try about some axis. Without loss of generality, we consider the z-axis as the axis of symmetry.
In the cylindrical coordinate system, vectors and tensors are represented in a local basis at each
point of the body. For every point x = Zl x;¢; € Q, we define a local basis given by the unit

i
VECtors e,(x),eq(x) and e,(y) associated with the radial, angular, and vertical directions, respec-
tively. The vector e,y points in the direction of x from the z-axis, the vector €g(x) 18 a rotation

of e,(x) in the counterclockwise direction about the z-axis by Z, and the vector €;(x) points in

the z-direction. More precisely,

1
€ = 7x) (x1€1 +xoe2),

~—~

1
€g(x) = TX)(—Xzel +x1e2),

ez(x) = e37
where r(x) = 4 /x{ +x3. Note that, for every x, the set L(x) = {,(x), €g(x), 2(x) } is an orthonor-

mal basis at x in the local cylindrical coordinate system. For isotropic materials, the Cauchy

momentum equation in the cylindrical coordinate system for axisymmetry reduces to

0%uy(x,1) d (19 duy(X,1) 10 [ du(x,1) 9%u,(x,1) _ur(x,1)

T—(A—FH)E(H? (ruer(x, t))+8—z tH ror d or * 072 r2
+br(x,1),

d%uy(x,1) )

P = (A+u)

10 duy(x,1) 19 [ Jdug(x,1) 0%u,(x,1)
az( a (rur(x t))+T>+u(rar <7’ or + aZQ, +b2(xat)7



and

aleQ(X,l‘) . 10 8u9(x,t) 82u9(x,t) ng(X,l‘)
p oz H (?E <r or >+ 02 r >+b9(x’t>’

2.4 Peridynamic model

The equation of motion for a point x € Q at time ¢ > 0 in bond-based peridynamics [6] is

given by

0%u

pw(x,t) = /f(u(x,t),u(x’,t),x,x’,t)dx'+b(x,t), (1)
Hy

where Hy is the peridynamic neighborhood given by Hy = Bs(x) N, where Bs(x) = {x' € R3:

||x" —x|| < 8} is the ball of radius & centered at x. In (1), f is the pairwise force function that

describes the nonlocal interaction between the point x and any other point X’ € Hy. In this work,

we consider a linear bond-based peridynamic model given by
flu(x,r),u(x’,1),x,x',1) = A(||x = x|)(¥' —x) ® (x' = x)) (u(¥,) —u(x,?)),

where A (||x’ —x]|) is the micro-modulus function which is based on the material properties.
When x is in the bulk of the body, i.e. more than § distance away from the boundary of Q,

the neighborhood Hy = Bj(x). Defining & =x’' —x and ) = u(x/,¢) —u(x,1), we can express (1)

for the linear bond-based peridynamic model as

pI 2= [ AQEDESE M +bx.0) @

Bj(x)

For isotropic materials, in the cylindrical coordinate system for axisymmetry, when the



material point x is § distant away from the z-axis, (2) reduces to

piiy(r,z) = / [—r (r’u,(r',z’) +rup(r,z) + (uz(r/,z') — 1 (r, z)) (z' —z)) )Loofo

B}(r2)
( (r + 7% )+2rr'u,(r,z) +7 (z/ —z) (uz(r/,z’) —uz(r,z))) /llofo
(rr ur(r',7) +r'2u,(r,z)) solr' dA(r' ) + by(r,2),
piiz(r,z) = (' =2) (Fur(r,2) + run(n2) + (2 = 2) (ue(r, ) —uz(r,2))) A%

B% (nz)

/

- (z —z) (ru,(r’,z)—}-ru,( ))l o dA(Y 7)) + by (1,2),

2_ (SN2 22
where 4,7, = j A(||E]]) cos™ () sin™(¢)d ¢ for integers m and n, and o = cos ™! (%) .
B%(r,z) is the two—d1mens1ona1 disk of radius o centered at x.
In the case when the material point x is not § distant away from the z-axis, to get the

equations of motion in the r-z plane, [ A, (-)dA is replaced by / A n(-)dA +
B(r2) B} (=rz)n{r'>0}

/ () AwindA (see Figure 1)
B%(r2)\B%(—n2)

3 Contributions made to the project

My contribution to the project was to derive the theorerical model, as well as to implement
the model numerically. I rigorously defined the notion of axisymmetry in terms of the local co-
ordinate system at each material point and derived the final axisymmetric peridynamic equation
using cylindrical coordinate transform. Using Matlab, I implemented a framework to simulate
the dynamics of both the classical and the peridynamic equations and computed the error be-
tween them at each time step. During my internship, I met with the members of my group
and presented my progress on a weekly basis. I also prepared a poster and presented it in the

“Summer 2019 Poster Session Opportunity with ORPA Research Symposium”.
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Figure 1: The region of integration in the r-z plane, when the horizontal cross-section of B(x)
intersects the z-axis.

4 What new skills and knowledge did you gain?

To handle tedious symbolic computations, I learned and used the open source software Sage
and its cloud-based implementation CoCalc, which was new to me. While implementing the ax-
isymmetric model in Matlab, I learned several tricks to efficiently generate meshes, to improve
computational speed by vectorizing certain operations, and to manage memory efficiently. To
understand the theory of classical linear elasticity better, I read several books on tensor calculus,

which strengthened my mathematical understanding.



5 Experience Impact on My Academic/Career Planning

In my study of partial differential equations as a Ph.D. student, non-local models play an
important role. My project for the internship was a direct application of non-local models to
engineering-related problems, linking theory to real-world situations. While working with the
research group at the lab, I was introduced to new and exciting problems in the field of solid
mechanics. Throughout the internship, I gained valuable coding experience that will help me
simulate mathematical models with ease. Overall, the internship helped me become a well-
rounded mathematician with experience in diverse mathematical fields and motivated me to

take up a research career.

6 Relevance to the mission of NSF

The study of deformation of solid materials is useful in many fields of science and engi-
neering, resulting in better design of equipments, products, and structures. This will in turn
lead to innovations that will improve the lives of people, advancing their health, prosperity, and

welfare, while promoting scientific progres. Thus, my project is important and it relates to the

NSF mission.
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