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Abstract

We discuss the mathematical problem of deconvolution with additive white noise
and its application to time-localized signals observed by ANITA. Considering a
simulated signal and the WAIS signals recorded by ANITA antennas, we study the
classical Fourier based deconvolution methods, as well as relatively recent wavelet-
based deconvolution ForWaRD algorithm. We also consider a multi-antenna model
that represents the physical problem more accurately and compare its output with
that of the single-antenna model.
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1 Introduction

In this report, we outline several Fourier-based and one wavelet-based method to de-
convolve time-localized signals observed by ANITA antennas. Using a simulated signal
and a set of time-localized pulses (referred here as WAIS pulses) recorded by ANITA an-
tennas, we conclude that the wavelet based deconvolution method performs better than
Fourier-based methods, in terms of both relative error and signal-to-noise ratio.

This report is organised as follows. In Section 1, we fix notation and some definitions
used throughout this report. In Section 2, we discuss the Fourier bases deconvolution
techniques applied to the theoretical signal and ANITA signals. In Section 3, we intro-
duce wavelet bases and discuss a wavelet-based deconvolution method called ForWaRD
algorithm. In Section 4, we introduce a multi-antenna model to closely represent the
mathematical problem related to deconvolving ANITA signals. In Section 5, we summa-
rize our observations, difficulties and further directions.

The plots are generated with GNU/Octave. The octave functions (compatible with
MATLAB syntax) used to generate the plots along with the documentation can be found
here: https://github.com/debdeep777/numerical/tree/master/wavelet. Also, the
main algorithm for the single-antenna model along with wavelet-related tools have been
ported to C++ as a library and can be applied to a vector of datatype double* to compute
the deconvolution. The C++ library WTools can be found here: https://github.com/

debdeep777/libWTools
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1.1 Notation

Signals are represented using lower case letters with temporal variable t. For example,
x(t), y(t) are signals, where t = 0, . . . , N − 1 for discrete time domain. Fourier transform
is represented using F and inverse Fourier transform using F−1. Fourier transform of a
signal denoted by a lower case letter is represented by its upper case letter and in terms
of the frequency variable f . i.e. F(x(t))(f) = X(f) for all f = 0, . . . , N − 1.

We define the l2 norm of a signal x by ||x(t)||l2 :=

(
N−1∑
i=0

|x(i)|2
) 1

2

.

We use (̃.) to represent an estimate of (.) both in temporal and frequency domains.

For any z ∈ l2(ZN), we define the root mean square RMS(z) =
||z||l2√
N

.

For computational purposes, we take N to be an integer power of 2 (usually 1024) so
that operations like Fast Fourier Transform or Fast Wavelet Transform can be computed
quickly.

Definition 1. l2(ZN) = {f : ZN → C|
N−1∑
i=0

|f(i)|2 <∞}

where ZN is the additive group of integers modulo N .

Definition 2. A linear filter is a linear transformation from l2(ZN)→ l2(ZN).

Definition 3. A time-invariant linear filter T is a translation-invariant linear transfor-
mation such that

T ◦ τk = τk ◦ T

for all k where τk(z)(t) = z(t− k) where z ∈ l2(ZN)

Theorem 1. T is a time-invariant linear filter if and only if there exists an impulse
response function h ∈ l2(ZN) associated with T such that

T (z) = h ∗ z

for all z ∈ l2(ZN).

Proof. See Theorem 2.19 of [5].

1.2 The Problem

The deconvolution problem is to find an estimate x̃(t) of the desired signal x(t) from the
observed signal y(t) when they are related by

y(t) = x(t) ∗ h(t) + n(t) (1)

where h(t) is the impulse response of the filter and n(t) is noise added to the filter, usually,
a white noise with standard deviation σ i.e. E|n|2 = σ2.

In the Fourier domain, Equation (1) can be written as

Y (f) = X(f)H(f) +N(f). (2)
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1.3 Sample signal: y

To compute relative error, we start with a known signal x, convolve it with an impulse
response h and then add a white noise with σ = 5 to get the test signal y, as shown in
Figure 1.
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Figure 1: Artificially constructed signal y with noise standard deviation σ = 5

We choose the width of the spike in x narrow enough so that the frequency support
of x contains the frequency support of h. See Figure 2.
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Figure 2: Original signal x and impulse response h in frequency domain. x is chosen such
that most of their frequency supports intersect.
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1.4 Sample ANITA signals: z

Shown in Figure 3a, we take z to be one of the WAIS pulses observed by ANITA. To
construct the signal z, signals from 15 antennas were chosen where the intensity was
maximum. The signals were then shifted in time domain to fix the delays and were
summed together. Finally, the sum of the signals is upsampled using a sinc interpolation
to increase resolution.
The impulse response function h (Figure 3b) is also generated by averaging the impulse
responses from all the antennas of ANITA.
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Figure 3: Signal z: WAIS event HpolC21203958: wpx(4, :)(320 : 320 + 1023) and impulse
response h
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1.5 Computing signal to noise ratio (SNR)

We use the following method to compute the SNR of a time-localized signal z(t) defined
on time interval I

• Remove zero-padding to avoid including silent parts of signal

• Let M = z(a) = max(z) and m = z(b) = min(z). Define peak region p = (b− a).

• Compute peak-to-peak distance using M −m.

• Remove a neighborhood of length np around the peak region and define the remain-
ing part of the signal by zout = z|I\[a−np,b+np].
(We have taken n = 20 here)

• Compute RMS of zout where RMS(zout) =

(
1

|I|+np
∑

t∈I\[a−np,b+np]
|z(t)|2

) 1
2

.

• Define SNR(z) = M−m
2RMS(zout)
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Figure 4: Computed SNR. The region between the red lines are removed while computing
the RMS of zout

Definition 4. Let x̃ be an estimate of x ∈ l2(ZN). Then, the relative l2-error is defined
by

rerr =
||x− x̃||l2(ZN )

||x||l2(ZN )
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2 Fourier based deconvolution methods

2.1 Naive Deconvolution

To retrieve X from Y , the most natural step is to divide by H on both sides of (2) to get
an estimate X̃ of X like this

X̃(f) :=

{
X(f) + N(f)

H(f)
if |H(f)| > 0

0 otherwise

Figure 5a and 5b shows the result of a naive deconvolution on y.
Issue: When H is small, the noise is significantly amplified in the Fourier domain. This
is evident in the figure.
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(b) Naive deconvolution on z

Figure 5: Naive deconvolution of noisy signals y and z is ineffective

2.2 Fourier shrinkage

To avoid amplifying noise via division, introduce Fourier based regularized deconvolution
(FoRD) with an attenuation parameter λ(f) ≤ 1 that is multiplied to X̃(f).

Then define the estimate of X by X̃λ, where

X̃λ(f) = X̃(f)λ(f). (3)

Then,

X̃λ(f) =

(
X(f) +

N(f)

H(f)

)
λ(f)

= X(f)λ(f) +
N(f)λ(f)

H(f)

= Xλ(f) +
Nλ(f)

H(f)

where Xλ(f) = X(f)λ(f) and Nλ(f) = N(f)λ(f).
Thus, the estimated signal x̃ has two parts, which are the retained (attenuated) signal
F−1(Xλ) and the leaked noise F−1(Nλ

H
).
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2.3 Examples of λ(f)

Based on the choice of λ, we have the following Fourier-based deconvolution methods

Definition 5. Naive deconvolution λ(f) = 1

Definition 6. Allpass deconvolution (from AnitaBuildTools) λ(f) = |H(f)|

Definition 7. Tikhonov deconvolution λ(f) = |H(f)|2
|H(f)|2+τ

, τ =constant

Definition 8. Wiener deconvolution λ(f) = |H(f)|2

|H(f)|2+ Nσ2

|X(f)|2

Remark 1. In order to use Wiener deconvolution, we need to supply X(f) to obtain the
optimal result. However, for practical purposes, since |X(f)|2 is unknown, we use |Y (f)|2
as a guess. ([6]) Since E|Y (f)|2 = E|X(f)H(f)|2, we divide |Y (f)|2 by ||H||2l2(ZN ) to get

a better guess for |X(f)|2. Instead of Nσ2, we can use |N(f)|2 (a frequency-dependent
quantity) where n(t) is raw noise data, but it does not provide significant improvement.
Figure 6 demonstrates the improvement of the Wiener deconvolution method in the context
of theoretically constructed signal y.

2.4 Comparison of Fourier based deconvolution methods

In Figure 7, we compare naive (7a, 7d), allpass (7b, 7e) and Wiener deconvolution (7c, 7f)
methods on theoretically constructed signal y and on ANITA data z. The performance
of naive deconvolution is poor, as expected. The allpass deconvolution scales the signal
peak by a factor of the amplitude of the impulse response, as well as introduces artifacts
that were not present in the original signal. The Wiener deconvolution performs well.
However, Gibbs phenomena are visible near the leading and the trailing edges of the
peaks.

2.5 Error analysis

Using x̃λ = F−1(X̃λ), Equation (2), (3) and Plancheral’s theorem,

||x− x̃λ||l2 . ||X(1− λ)||l2 + ‖Nλ

H
‖l2

= ||x ∗ F−1(1− λ)||l2 + ‖Nλ

H
‖l2

. ||X||l1||1− λ||l2 + ‖Nλ

H
‖l2 (Young’s convolution inequality)

. ||X||l2||1− λ||l2 + ‖Nλ
H
‖l2

= ||x||l2 ||1− λ||l2 + ‖Nλ
H
‖l2

= Esig + Enoi

8



200 400 600 800 1000
-3

-2

-1

0

1

2

3

y/sd(h) as a guess for x

200 400 600 800 1000
-3

-2

-1

0

1

2

3

y as a guess for x

Figure 6: Wiener deconvolution with |Y |2 (top) and |Y |2
||H||22

(bottom) as a guess for |X|2.

where Esig = ||x||l2||l − λ||l2 and Enoi = ||Nλ
H
||l2 .

For Naive deconvolution, λ = 1, hence, Esig = 0 and Enoi . ‖NH−1‖l2 , can be very
large depending on H For allpass deconvolution, λ = |H|. So, Esig = 0 only if |H(f)| = 1
for all f , which is not necessarily true for an impulse response h.
For any other choice of h, the retained signal part does not converge to the original
signal. Here, Enoi = ||n||l2 For Wiener deconvolution, λ→ 1 as σ2 → 0, hence Esig → 0.
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Figure 7: Comparison of Fourier based deconvolution methods applied to the constructed
signal y (top) and Anita signal z (bottom). From left to right: naive, allpass and Wiener
deconvolution.

Enoi ≤ ||N/H||l2 for all n, h. For Tikhnov deconvolution, we assume that the SNR is
constant for all frequencies, which is not true for ANITA data.

2.6 Wiener vs allpass deconvolution

We note that for allpass deconvolution, the estimated signal x̃ does not converge to x
as σ → 0, unless |H(f)| = 1 for all f . On the other hand, the Wiener deconvolution is
optimal in the following sense:

Theorem 2. The estimate x̃ obtained via the Wiener deconvolution defined above mini-
mizes the mean square error

E|X̃(f)−X(f)|2

among all estimates obtained by applying linear filters to y, for each f .

In Figure 8 and 9 we show the output of allpass and Wiener deconvolution respectively,
on 8 of the WAIS pulses observed by ANITA.

We observe that Wiener performs better compared to allpass deconvolution in terms
of relative error, whereas in terms of SNR, both methods are comparable.

However, Wiener deconvolution has a few drawbacks. It does not perform well with
signals with singularities or “roughness” (high values of derivative) because the energy of
the singularity spreads over many Fourier coefficients with significant contributions. Like
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Figure 8: Allpass deconvolution

all Fourier based deconvolution methods, Wiener deconvolution shows ringing round the
edges (Gibb’s phenomenon) since the basis elements are not temporally localized. Finally,
the presence of leaked noise F−1(Nλ

H
) remains in the output, contributing to the relative

error and lowering the SNR.
This motivates us to study the wavelet bases of l2(ZN).

3 Wavelet based deconvolution

We represent the signal in terms of the wavelet basis elements that are localized in the
time domain as well as the frequency localized. Thus, rough signals can be represented
economically (i.e. using a fewer basis elements). There are wide choices of wavelet bases
available to represent the signal. See Figure 10 for a few choices of such basis elements.
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Figure 9: Wiener deconvolution

3.1 Understanding the wavelet basis

For l2(ZN), consider the Euclidean basis which is completely localized in the time domain,
i.e., each basis element is supported at one time point. On the other hand, consider the
Fourier basis which is completely localized in the frequency domain and thus completely
delocalized in the time domain (i.e. spread over the entire time domain) due the uncer-
tainty principle.

Also, note that in the time domain, the elements of the Euclidean basis are formed
by starting with one basis element (e.g. δ1,j) and shifting it N times by one unit. On the
other hand, the elements of Fourier basis are formed by starting with one basis element
(e.g. e−2πit/N for each t = 0, . . . , N − 1) and then scaling it (i.e., multiplying t by an
integer) N times.

Based on the principle that the noise populates any complete orthonormal basis en-
tirely whereas the signal power is localized in the time domain, we look for a complete
orthonormal basis whose elements are localized in time domain but are less localized than
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Figure 10: Wavelet (above) and scaling (below) functions: (from left) Daubechies-10,
Shannon, Meyer, Biorthogonal 1.3 (decomposition), Biorthogonal 1.3 (reconstruction)

the Euclidean basis in time domain, so that they are localized in frequency domain as well
(by the uncertainty principle). Choosing the Euclidean domain to denoise the signal will
modify its frequency information in an undesired way. Similarly, choosing a frequency
domain to denoise the signal will fail to capture its time-localized nature.

Unfortunately, we cannot produce a complete orthonormal basis by shifting one func-
tion that is less localized than the Euclidean basis elements. However, it is possible to do
so by considering two functions and shifting each of them N/2 times by 2 units, provided,
the two functions ϕ and ψ follow certain conditions.

More precisely, {τ2kϕ}N/2−1
k=0 ∪ {τ2kψ}N/2−1

k=0 is a complete orthonormal basis of l2(Z) if
and only if the matrix

1√
2

[
Φ(f) Ψ(f)

Φ(f +N/2) Ψ(f +N/2)

]
is unitary for each f = 0, . . . , N − 1, where τl is a time-domain shift operator by l units.
See Theorem 3.8 of [5] for a proof.

Definition 9. The functions ψ and ϕ are called the wavelet function and the scaling
function respectively. They are also called the generators of the 1st stage wavelet basis for
l2(Z).
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By convention, the wavelet and scaling functions are a high pass and a low pass filters
respectively. See Figure 10 for example of such functions.

The vector subspace spanned by {τ2kϕ}N/2−1
k=0 is then decomposed further into spans

of two families of orthonormal basis elements generated by scalings of ϕ an ψ. More pre-

cisely, {τ22kϕ2}
N
22
−1

k=0 ∪ {τ22kψ2}
N
22
−1

k=0 is an orthonormal basis for the span of {τ2kϕ}N/2−1
k=0 ,

where ϕ2 and ψ2 are obtained by scaling ϕ and ψ respectively. Thus, {τ22kϕ2}
N
22
−1

k=0 ∪
{τ22kψ2}

N
22
−1

k=0 ∪ {τ2kψ}N/2−1
k=0 is an orthonormal basis of l2(ZN) and is called the 2nd stage

wavelet basis.

Continuing in this fashion, the p-th stage wavelet wavelet basis for l2(Zn) is

{τ2pkϕp}
N
2p
−1

k=0 ∪ {τ2pkψp}
N
2p
−1

k=0 ∪ {τ2p−1kψp−1}
N

2p−1−1

k=0 ∪ · · · ∪ {τ22kψ2}N/2
2−1

k=0 ∪ {τ2kψ1}N/2−1
k=0

where ψ1 = ψ and ψk+1 is a scaling of ψk.

To avoid cumbersome notations, we define ψj,l := τ2jkψj and similarly for ϕj,l. Note
that, if N = 2n, we can construct at most the nth stage wavelet basis. Although, in
practice, we do not need to go all the way to nth stage.

To conclude, starting from two functions, followed by scaling and shifting, it is pos-
sible to construct an orthonormal basis, whose elements are localized both in time and
frequency domain. The basis elements as well as the coefficients of each signal with re-
spect to this basis are indexed by two parameters: j and l, related to scaling and shifting
(or localization), respectively. Thus, it is convenient to represent the wavelet coefficients
in a two dimensional way, where the horizontal dimension represents localization k and
the vertical dimension represents scaling j.

See Figure 11 for such a representation of wavelet coefficients of ANITA signal z.

3.2 Wavelet decomposition

Given z and additive noise n, we need to estimate x when

z(t) = x(t) + n(t).

Given a wavelet function ψ and scaling function ϕ, a J-th resolution wavelet approx-
imation xJ of x is

xJ(t) =

Nj0−1∑
l=0

sj0,lϕj0,l(t) +
J∑

j=j0

Nj−1∑
l=0

wj,lψj,l(t)
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where Nj = N
2j

. Here, j represents the scaling (also called the level) and l represents the
(temporal) localization at time 2jl of the wavelet bases, j0 is the coarsest resolution level.

It can be shown that lim
J→∞

||xJ − x||2 = 0. The map that takes x to its wavelet

coefficients is called the wavelet transform. The wavelet coefficients of a signal of length
N can be computed in O(N) complexity using Fast Wavelet Transform (FWT).

Apart from computing the wavelet coefficients via wavelet transform, we can compute
them using the inner product with the wavelet basis elements.

wj,l = 〈x, ψj,l〉

=
N−1∑
t=0

x(t)ψ̄j,l(t)

=
1

N

N−1∑
f=0

X(f)Ψ̄j,l(f)

=
1

N

N−1∑
f=0

X(f)Ψ̄j,l(f)

3.3 Choices of wavelet basis to represent given signal

Ideally, the wavelet basis is chosen based on the smoothness requirement of the desired
signal. To choose the wavelet basis, two factors are to be fixed: the support of the wavelet
basis (the time interval on which the wavelet is nonzero) and the vanishing moment (the
function is said to have p-th vanishing moment if up to (p− 1)th derivative of its Fourier

transform at zero is zero. i.e. dj

dfj
Ψ(0) = 0 for all j = 1, 2, . . . , p − 1). The vanishing

moment is related to how fast the function decays at infinity. For example, to approximate
the function sin(t)

t5
, we need to consider wavelets of vanishing moment less or equal to 4.

The support and vanishing moments are related in the sense that smaller support
implies smaller vanishing moment.

3.4 Estimating signals in wavelet domain

From now on, we only write the wavelet coefficients wj,l associated to the basis elements
ψj,l, others are similar.

First, we look at the wavelet coefficients of the signal obtained using the Fourier based
deconvolution. But these wavelet coefficients have leaked noise introduced by the Fourier
based deconvolution. So, this noise needs to be thresholded. More precisely, we first
estimate the wavelet coefficients of wj,l of x by w̃j,l where wj,l is the wavelet coefficient
of the signal obtained using a Fourier based deconvolution method. Then, we shrink or
threshold w̃j,l using a wavelet shrinkage parameter λwj,l where

wj,l := λwj,lw̃j,l.

15



Finally, we compute the estimate x̃J of x from thresholded coefficients using

x̃J(t) :=
∑

w̃j,l;λψj,l.

3.5 Wavelet shrinkage for denoising

Here are some examples of wavelet shrinkage parameters.

Definition 10. Oracle thresholding [4]

λwj,l := I{|wj,l|>σj}

for every l, where σ2
j is the noise variance at level j and I is the indicator function.

This is parameter is impractical since wj,l is unknown. In practice, we take w̃j,l as a
guess.

Definition 11. Hard thresholding

λwj,l := I{|w̃j,l|>ρjσj}

where (recall) w̃j,l = 〈x̃, ψj,l〉 and ρj > 0 is a scale-dependent thresholding parameter.

Definition 12. Soft thresholding [3]

wj,l;λ := sgn(w̃j,l)(|w̃j,l| − ρjσj)I{|wj,l|>ρjσj}

Definition 13. Wavelet domain Wiener

λwj,l :=
|wj,l|2

|wj,l|2 + σ2
j

Since wj,l is unknown, do a hard thresholding first with respect to a different wavelet basis
to estimate wj,l.

In Figure 11, the wavelet coefficients of the signal y are shown for level 1 through 5
and the coarsest level 5. The thresholds are shown using a pair of red lines. After the
hard thresholding is applied, the result is shown in Figure 12.

Figure 12 demonstrates the effect of ρ as an extra control over the wavelet shrinkage.
High values of ρ produces less noisy results but removes signal power.

3.6 How much to threshold after Fourier shrinkage?

We apply a wavelet shrinkage of λwj,l = I{|wj,l|>σj,l,λ} after performing a Fourier based
deconvolution with Fourier shrinkage parameter λ.

Theorem 3. The variance of the leaked noise at the j-th level is

σ2
j,l,λ = σ2

N−1∑
f=0

|Ψj,l(f)|2

|H(f)|2
|λ(f)|2. (4)
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Figure 11: Wavelet coefficients of the 5-th resolution wavelet decomposition of z are shown
using a stem plot using blue color. The red lines represent noise standard deviations which
will be thresholded later.
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Figure 12: Wavelet coefficients of z are shown using a stem plot using blue color after
a hard thresholding has been applied to Figure 11. Any coefficient between the two red
lines at each level in Figure 11 is set to zero.
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Figure 13: From top to bottom: hard and soft thresholding used in ForWaRD method to
deconvolved y. From left to right: ρ = 1, 2, 3, 4, 5. In all cases 5-th stage Meyer’s wavelet
decomposition were used. Soft thresholding is more effective in removing artifacts.

In particular, for Wiener deconvolution, λ = |H|2
|H|2+Λ

. Thus,

σ2
j,l,λ = σ2

N
2∑

f=N
2

+1

|Ψj,l(f)|2
[

|H(f)|
|H(f)|2 + Λ(f)

]2

Remark 2. When Λ(:= 1/SNR)→ 0 and the variance of the noise σ remains fixed, we
have σ2

j,l,λ → σ2. Also, when |H(f)| > 1 for all f , we have reduced variance of leaked
noise σ2

j,l,λ < σ2.

3.7 ForWaRD: balancing Fourier and wavelet shrinkage

Wavelet-based deconvolution methods have been studied extensively in recent years. See
WaveD method [7], wavelet based Galerkin method [2], wavelet frame based deconvolution
[1], for example. Here, we consider the Fourier Wavelet based Regularization Deconvolu-
tion (ForWaRD) algorithm introduced by [8]. It has the following steps.

1. Do Wiener decovolution with a scaling parameter αj to estimate j-th level wavelet
coefficient of x

X̃(f) =
Y (f)

H(f)

|H(f)|2

|H(f)|2 +
Nαjσ2

|Y (t)|2

2. Compute the wavelet coefficient w̃j,l

w̃j,l =
N−1∑
f=0

X̃(f)Ψ̄j,l(f)
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3. Compute thresholded wavelet coefficient wj,l;λ using hard, soft or wavelet domain
Wiener thresholding and leaked noise variance σj(αj) and level-dependent thresh-
olding parameter ρj.

4. Reconstruct x using

xJ(t) =
J∑

j=j0

Nj−1∑
l=0

wj,l;λψj,l(t)

3.8 Optimal choice for αj

Theorem 4. [8] For Oracle thresholding, the cost function

˜MSEj(αj) =

Nj−1∑
l=0

N−1∑
j=0

|X(f)|2|Ψj,l|2|1− λ(αj)|2

+

Nj−1∑
l=0

min(|wj,l|2, σ2
j,λ(αj)

)

is minimized if the scaling parameters αj satisfy

αj =
1

Nj

#{|wj,l| > σj(αj)} (5)

Remark 3. Wiener deconvolution corrupts the signal power associate with the frequency
carrying noise. Thus, Equation (5) implies that signals with more economical wavelet
representations should require less Fourier shrinkage and vice versa. Thus, a signal with
larger number of unthresholded wavelet coefficients imply that that signal required more
Fourier shrinking.

Unfortunately, we do not have any analytical formula for αj. However, αj’s are inde-
pendent, hence, they can be computed using bisection method or Newton’s method, making
the process computationally expensive. Thus, instead of computing the scaling parameters
αj’s for all each signal, we choose a set of signals first and plot the distribution of the
scaling parameters. Then, we choose a reasonable statistics (for example, median) as an
estimate of the scaling parameters for the rest of the signals.

In Figure 14, we show the distribution of {αj}6
j=1 of arbitrarily chosen eight WAIS

pulses. Although the sample size considered here is too small, this method will give up
a reasonable “guess” for αj to be used in ForWaRD algorithm applied to other WAIS
signals.

3.9 Comparison of ForWaRD, Wiener and allpass deconvolu-
tions for y

In Figure 15, we apply 3 deconvolution methods to the simulated signal y and compare
the relative error and SNR. We generate noise of various standard deviation to create the
simulated data.
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Figure 14: Distribution of the scaling parameters αj of 8 wavefoms. The level 5 - coarse
is dropped so the value does not matter.

As the noise level increases, the deconvolution methods get less effective (i.e. the
relative error increases). However, in all noise levels, ForWaRD method performs better
compared to other two deconvolution methods.

3.10 Parameters of ANITA data

• ANITA hardware has an effective passband of 180-1250 MHz.

• The sample rate of the signals is fs = 1010 samples/s. So, the Nyquist frequency is
5× 109 GHz or 5000 MHz.

3.11 Deconvolving ANITA signals

To deconvolve ANITA data using ForWaRD algorithm, we use the noise data captured
by ANITA to estimate noise power. We start with a guess for αj and apply the ForWaRD
algorithm using the modified Wiener deconvolution and 5-th resolution Meyer’s wavelet
basis and soft thresholding. We iterate using bisection method to get the optimum scaling
parameters αj. Finally, we apply an aggressive thresholding on 5th level Meyer’s wavelet
basis to punish frequency ranges 0-200 MHz. Finally, we project the output onto the 2nd
level Meyer’s wavelet level to punish frequency ranges 1000 - 5000 MHz (approximately).
Alternatively, we apply a Plank-taper window (a smooth Fourier cut-off function) to
remove unwanted frequency ranges from the output signal.
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Figure 15: Relative error and SNR are compared among ForWaRD, Wiener and allpass
deconvolution. For all noise variance, ForWaRD produces lowest relative error and highest
SNR. A level-dependent threshold was used for ForWaRD method.
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Figure 16: A typical ANITA signal of sample length 1024. The power spectrum is shown
below in dB.
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Figure 17: Example of noise data captured by ANITA to estimate noise power.
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Figure 18: Frequency supports of Meyer’s wavelet basis elements of different stages up to
5-th stage. E.g., P−5(z) has a frequency support approximately [0, 200]MHz that can be
dropped. Similarly, P−2(z) will have frequency support approximately [0, 1600]MHz.

3.12 ForWaRD method applied to ANITA signal z

Figure 20 is the output of the ForWaRD algorithm applied to ANITA signal z. We
determine the scaling parameters {αj} using a Newton’s method. Here we have used a
5-th resolution wavelet decomposition and Meyer’s wavelets.
In Figure 21, we show the observed ANITA signal z in different wavelet levels and the

corresponding spectrum.
In Figure 22, we show the wavelet decomposition of the deconvolved signal (Fig 20)

in different levels and the corresponding spectrum.

3.13 Effect of ρj on ANITA data

The presence of noise in the non-peak region of the output of the ForWaRD algorithm (as
seen in Figure 20) suggests that the noise variance was not chosen appropriately. However,
looking at the output signal at various wavelet levels, we can adjust the values of ρj to
get rid of this noise. Figure 23a is an example of sample values of ρj that produce a signal
with much higher SNR compared to default values of ρj (which is ρj = 1 for all j).

3.14 ForWaRD algorithm applied to eight WAIS pulses

In Figure 24, we apply the ForWaRD algorithm to 8 WAIS pulses and show the output.
We use Meyer’s wavelets and consider wavelet decomposition till level 5. The values of
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Figure 19: Support of other wavelet bases: D10 and Shannon

200 400 600 800 1000
-1

-0.5

0

0.5

1

22.5998

Figure 20: ForWaRD method has been applied to z with ρ = (1, 1, 1, 1, 1, 10e10) (i.e. 5-th
coarse level wavelet coefficients were removed) and the output was projected onto 2nd
stage wavelet subspace (i.e. 1st and 2nd level coefficients were removed). The SNR is
written above. There are some artifacts in the non-peak region.

ρj = 1 for all j and αjs are computed using a bisection method.
The SNR are printed on top of each signal.

Next, we use the modified values of ρj’s (ρ = (1, 1, 4.5, 3, 2, 10e10)) that we determined
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Figure 21: Decomposition of signal z (left) and the powers (right) of the corresponding
levels. The frequency ranges of each level is shown using red curves.

from applying ForWaRD algorithm to signal z and apply it to 8 WAIS signal. The out-
puts are shown in Figure 25.

This choice of ρ seems effective in removing noises in the non-peak regions for all these
signals. Further modification can be made to ρ to remove artifacts observed in the 8th
signal, for example.

3.15 Other wavelets: Daubechies 10, Shannon

The correct choice of wavelet basis depends on the smoothness requirement of the desired
signal. In the case of ANITA data, the smoothness of the signal is unknown.

In Figure 26, we apply the ForWaRD algorithm with Daubechies 10 wavelets instead
of Meyer’s wavelets, while keeping all the parameters same as in Figure 25, whereas, in
Figure 27 we use Shannon’s wavelets.

Since any choice of wavelets will generate an orthonormal basis of l2(ZN), the main
features of the signal are the same in each case. However, whenever a part of the signal
is represented by a very few wavelet basis elements, the shape of the chosen wavelets are
visible, causing visual difference.
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Figure 22: Wavelet coefficients of level 1,2 and 5 are suppressed in the signal. Level 3 has
most contribution to the artifacts in the non-peak region.

It is unclear at this moment what the right wavelet basis should be. However, assuming
that the profile of the ANITA signal are similar to that of the simulated signal y, we
observed that out of the three wavelet families considered here, the smallest relative
error is achieved for Meyer’s wavelets. Thus, we choose Meyer’s wavelets to be the most
appropriate wavelets for deconvolving ANITA signals. However, further investigation is
needed to look for some smoothness information about the ANITA signals.

4 Model for deconvolution with multiple antennas

So far, for the sake of simplicity, we have considered z to be the observed signal and
supplied the impulse response K to the ForWaRD algorithm to perform deconvolution.
However, z is actually the average of 15 signals collected from 15 separate antennas, all of
which observed the same event. Each of the antennas have their own impulse response. In
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(a) Output of ForWaRD algorithm applied to z with modified ρ
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Figure 23: ForWaRD method has been applied to z with ρ = (1, 1, 4.5, 3, 2, 10e10) and
the output was projected onto 2nd stage wavelet subspace. The output signal (above)
and the power spectrum (below) are shown. The SNR is written above.

this section, we apply the ForWaRD algorithm to each of those 15 antennas to deconvolve
each signal and compute the average of the outputs.

First, we fix the notations.
Let xi be the signal arriving at the i-th antenna, where i = 1, . . . ,M . (For ANITA

signals, M = 15).

Let yi be signal observed by the i-th antenna and hi be the impulse response of the
i-th antenna.

Our goal is to estimate x, the average of xi’s. i.e.

x =
1

M

M∑
i=i

xi.

• Case 1: (average-deconvolve-denoise) This the case we have considered in the pre-

vious sections. The aim was to estimate 1
M

M∑
i=1

xi where

1

M

M∑
i=1

yi =

(
1

M

M∑
i=1

xi

)
∗

(
1

M

M∑
i=1

hi

)
+

1

M

M∑
i=1

ni
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Figure 24: We use 8 WAIS pulses observed by ANITA to test the parameters

• Case 2: (deconvolve-denoise-average) This is the case we will be considered in this

section. The aim is to estimate 1
M

M∑
i=1

xi where

yi = xi ∗ hi + ni for each i = 1, . . . ,M

On the Fourier domain, the estimate X̃ can be represented by

N∑
f=1

(Yi(f)−Ni(f))

N∑
f=1

Hi(f)

for Case 1

N∑
f=1

Yi(f)−Ni(f)

Hi(f)
for Case 2
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Figure 25: ForWaRD method applied to the WAIS signals

4.1 ForWaRD applied to multiple antennas (i.e. Case 2)

In Figure 28, the ForWaRD algorithm is applied to each of the 15 observed signals yi
and then the average is taken over the outputs of the ForWaRD algorithms. The impulse
response and the noise standard deviation recorded by each antenna is supplied to the
algorithm. Note that the artifacts in the off-peak region do not sum as destructively as in
Case 1. The accumulation of spikes at the beginning and the end is due to zero-padding
in the observed signal.

A heuristic explanation of the output of Case 2 (Figure 28) having less SNR compared
to the output of Case 1 (Figure 23) is that the noise is considered to be independent at each
time point, thus they add up destructively in Case 1 before we apply the deconvolution
algorithm. But, in Case 2, the deconvolution algorithm removes the independent noise
present in each signal. So, the averaging effect is not destructive enough afterwards,
causing a lower SNR value.

More precisely, if {ni}Mi=1 are i.i.d. random variables with standard deviation σ,
M∑
i=1

ni

is a random variable with standard deviation
√
Mσ. Thus the noise standard deviation of
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Figure 26: ForWaRD with D10 wavelet basis, same parameters

M∑
i=1

yi is amplified by a factor of
√
M , whereas, the peak of the signal increased by a factor

on M . So, summing the noisy observed signals increases the SNR before performing a
deconvolution. (See 23)

4.2 Comparison of Case 1 and Case 2: different deconvolution
methods

In Figure 29, 30 and 31 we compare the outputs of Case 1 and Case 2, when a allpass,
wiener and ForWaRD deconvolution is applied.

We observe that the difference between the outputs of Case 1 and Case 2 in terms
of SNR is negligible for Fourier bases deconvolution methods since they are linear with
respect to the observed signal, whereas, the wavelet based ForWaRD algorithm, being
nonlinear in nature, produces significantly different results.
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Figure 27: ForWaRD method with Shanon wavelet basis, same parameters

5 Summary

5.1 Conclusion

• Allpass deconvolution does not preserve the l2 norm of original signal.

• Wiener deconvolution converges to the original signal when noise-to-signal ratio
approaches zero.

• Both Wiener deconvolution and ForWaRD method produce higher signal-to-noise
ratio and lower relative error than allpass deconvolution for theoretically constructed
signals.

• Level-dependent thresholding removes artifacts and improves relative error (for sim-
ulated signal) and SNR (for both simulated signal and ANITA signal).

• For ANITA data, theoretical deconvolved signal is not available hence cannot com-
pute the relative error. Thus, we rely on results from simulated signal y.
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(b) Average of 15 deconvolved signals shown in Figure 28a

Figure 28: Output of multi-antenna model: ForWaRD-deconvolved individual antenna
signals and their average
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(a) Allpass - Case 1
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(b) Allpass - Case 2

Figure 29: Comparison between the single-antenna and multi-antenna model applied to
z when we apply allpass deconvolution

• Noise level was estimated from signals observed by ANITA when there was no
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(b) Wiener - Case 2

Figure 30: Comparison between single-antenna and multi-antenna model applied to z
when we apply Wiener deconvolution
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(b) ForWaRD - Case 2

Figure 31: Comparison between single-antenna and multi-antenna model applied to z
when we apply ForWaRD algorithm

distinguishable spike.
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• For ANITA data, allpass deconvolution has higher SNR compared to that of Wiener
deconvolution. However, ForWaRD produces much better SNR compared to both
methods.

• Computing optimal scaling parameters for each signal is computationally expen-
sive so we choose the same set of parameters for each signal, resulting inaccurate
thresholding.

• The multi-antenna model is a more accurate representative of the deconvolution
problem related to ANITA signals. However, it is more computationally expensive
and produces lower SNR compared to that of the single-antenna model. However,
the profiles of the output signals are similar to each other.

5.2 Further questions

One of the main obstacles of implementing the deconvolution algorithms is to determine
the right noise level present in the observed signal. To deconvolve the ANITA signals,
we have used the standard deviation of the noise recorded by the antennas when there
were no known signals coming to the antennas. To get a more accurate noise level, we
need to record the output of the antennas in isolation. However, we need to take care of
other factors (e.g. temperature) that affect the noise level during the ANITA flight while
deconvolving the observed signal.

In the context of ANITA signals, we have considered only WAIS pulses, which are
known to be localized in time. This helped us define a notion of SNR, even when the
original signal is unknown. However, for a general signal (possibly non-localized in time),
we do not have a quantity to measure the performance of the deconvolution algorithms.
In that case, we have to rely on simulated signals to compare the performances in terms
of relative error.
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